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Daily precipitation time series are composed of null entries corresponding to dry days and nonzero
entries that describe the rainfall amounts on wet days. Assuming that wet days follow a Bernoulli process
with success probability p, we show that the presence of dry days induces negative correlations between
record-breaking precipitation events. The resulting nonmonotonic behavior of the Fano factor of the record
counting process is recovered in empirical data. We derive the full probability distribution PðR; nÞ of the
number of records Rn up to time n, and show that for large n, it converges to a Poisson distribution with
parameter lnðpnÞ. We also study in detail the joint limit p → 0, n → ∞, which yields a random record
model in continuous time t ¼ pn.
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It is widely expected that global climate change leads to an
increase in the frequency of extremeweather conditions such
as heat waves, droughts, and heavy precipitation [1–5]. The
public perception of weather extremes is particularly sensi-
tive to record-breaking events, which often receive extensive
media coverage. Records are extremes that are defined not
relative to some threshold value, but relative to all preceding
events. Their analysis provides a useful tool for the distri-
bution-free inference of trends, because the temporal record
statistics of sequences of independent random variables
drawn from a continuous probability distribution is mani-
festly universal [6–15]. This observation has motivated a
number of recent studies aimed at detecting and quantifying
the effects of a warming climate on the frequency of
temperature records [16–23].
In comparison, the effects of climatic trends on precipi-

tation records are more complex and have generally received
less attention [24–26]. To detect such trends, the null model
describing a stationary climate has to account for the specific
structure of a precipitation time series. In contrast to temper-
ature, which is well described as a Gaussian random
variable [18,23], the amount of daily rainfall at a specific
location has a positive probability of being exactly zero.
Stochastic precipitation models incorporate this feature by
combining an occurrence process that determines whether a
given day is dry (zero precipitation) or wet (nonzero
precipitation) with an amount process that specifies the
amount of rainfall on a wet day [27].
In this Letter we show that the presence of dry days has a

profound effect on the occurrence statistics of precipitation
records in a stationary climate. Assuming that the wet days
follow a Bernoulli process with success probability p, we
find that record events become negatively correlated when
p < 1. This is inmarked contrast to thewell-known property

of record events from sequences of independent, identically
and continuously distributed (IICD) random variables to be
stochastically independent [8,13–15]. As a consequence, we
show below that the ratio of the variance and the mean of the
record counting process, known as the Fano factor, displays a
minimum at intermediate times when q ¼ 1 − p is suffi-
ciently large. This minimum is an unequivocal signature of
correlations between record events, and we demonstrate that
it can be clearly identified in empirical data. For this
comparison we use time series comprising rainfall amounts
on a given calendar day over several decades, which justifies
the assumption of uncorrelated occurrence and amount
processes. We expect that the mechanism giving rise to
correlations in the Bernoulli model is of broader relevance
also beyond the specific context of precipitation records, and
provide a detailed analysis of the model including the full
distribution of the number of records.
Bernoulli model.—Within the Bernoulli model a dry day

with zero precipitation occurs with probability q, and a wet
day with probability p ¼ 1 − q. For a wet day, the amount
of precipitation x is a random variable drawn from a
continuous probability density pWðxÞ with support on
the positive real axis. The full probability density of
precipitation x on any randomly selected day thus reads

pðxÞ ¼ qδðxÞ þ ð1 − qÞpWðxÞ: ð1Þ
The δ function at x ¼ 0 implies that the corresponding
cumulative distribution function

PðxÞ ¼
Z

x

0

dx0pðx0Þ ¼ qθðxÞ þ ð1 − qÞPWðxÞ ð2Þ

is discontinuous at the origin, as indicated by the Heaviside
theta function. We are interested in the statistics of the
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number of record events Rn that have occurred up to time n.
It is convenient to introduce a binary indicator variable σm
for the mth day such that σm ¼ 1 if a record occurs on the
mth day, and σm ¼ 0 otherwise. Clearly

Rn ¼
Xn
m¼1

σm: ð3Þ

We note one important point: If a record occurs on the mth
day, then the mth day is necessarily wet.
The expected number of records is given by

hRni ¼
Xn
m¼1

hσmi ¼
Xn
m¼1

rm; ð4Þ

where the record rate rm denotes the probability that a
record occurs on the mth day. The latter, assuming that the
entries of the time series are independent, is given by

rm ¼ ð1 − qÞ
Z

∞

0

dxpWðxÞPðxÞm−1; ð5Þ

with the following interpretation: the probability density
that the mth day is wet with precipitation x > 0 is
ð1 − qÞpWðxÞ, and in order for this to be a record all the
previous m − 1 days must have precipitation less than x.
To perform the integration we make the substitution
x → u ¼ PðxÞ, noting that u ∈ ½q; 1� and du ¼
ð1 − qÞpWðxÞdx for x > 0. The resulting expression

rm ¼
Z

1

q
du um−1 ¼ 1 − qm

m
ð6Þ

is independent of the distribution pWðxÞ and reduces to the
classic result rm ¼ 1=m for IICD random variables when
q → 0. Correspondingly, the expected number of records
up to day n is given by

hRni ¼
Xn
m¼1

1 − qm

m
: ð7Þ

For large n and fixed q ¼ 1 − p, it is easy to show that
hRni ≈ lnðpnÞ þ γE, where γE ¼ 0.57721… is the Euler
constant (see [28] for details). Thus, at late times the record
sequence looks like a “diluted” IICD record process where
the effective number of random variables that have been
presented up to time n is reduced by a factor p. We will see
below that this observation applies also to the variance as
well as to the full distribution of Rn.
To compute the second moment of Rn, we square and

average Eq. (3), using that σ2m ¼ σm. This gives

hR2
ni ¼ hRni þ 2

Xn−1
l1¼1

Xn−l1
l2¼1

hσl1σl1þl2i; ð8Þ

where hσl1σl1þl2i is the joint probability of two records
occurring on day l1 and l1 þ l2. To compute this, let the

record at day l1 have value x1 and the one at l1 þ l2 have
value x2 with x2 > x1. Evidently, both days have to be
necessarily wet. All the days before l1 must have precipi-
tation values less than x1, and all the days between l1 and
l1 þ l2 must have precipitation values less than x2. Writing
down the corresponding probability in analogy to Eq. (5)
and performing the substitution x → PðxÞ (see [28]) leads
to the simple form

hσl1σl1þl2i ¼
Z

1

q
du2

Z
u2

q
du1u

l1−1
1 ul2−12 ; ð9Þ

with l2 ≥ 1. For l2 ¼ 0, hσ2l1i ¼ rl1 . Combining Eq. (9)
with the result (6) for the record rate yields the connected
correlation function of record events,

gl1;l1þl2 ≡ hσl1σl1þl2i− rl1rl1þl2

¼−
ql1

l1

Z
1

q
duul2−1ð1−ul1Þ

¼−
ql1

l1

�
1−ql2

l2
−
1−ql1þl2

l1þ l2

�
; ð10Þ

which is universal [independent of pWðxÞ] for all l1 ≥ 1
and l2 ≥ 1. The second equality in Eq. (10) manifestly
shows that the correlation is negative for all l1, l2, and
0 < q < 1. Thus, the record events become anticorrelated
when q > 0. The origin of these correlations ultimately lies
in the discontinuity of the distribution function (2), which
reduces the domain of integration in Eqs. (6) and (9)
compared to the IICD case. A simple explanation can be
provided for n ¼ 2 [28]. If the first day is wet it is a record
by definition, and the same holds for the second day if the
first day is dry. However, if both days are wet, the second
day is a record only if the corresponding precipitation
amount exceeds that of the first day, which is true with
probability 1

2
. Thus, the presence of a record on the first day

reduces the record probability on the second day.
For fixed l1 and large l2, the connected correlation function

decays as a power law, gl1;l1þl2∼−q
l1=½l2ðl1þl2Þ�∼l−22 .

This indicates that the record breaking events are rather
strongly correlated. Inserting Eq. (9) into Eq. (8) and
performing the double sum yields, after a substantial amount
of algebra, the expression [28]

VnðqÞ ¼ hR2
ni − hRni2 ¼ hRni

þ 2

Z
1

q

du un

1 − u

�Z
u

q
dv

1 − vn

1 − v
−
Z

1

q=u
dv

1 − vn

1 − v

�

ð11Þ

for the variance of the number of records up to day n.
Asymptotically for large n with fixed q, we find that
[28] VnðqÞ → hRni − π2=6 ≈ lnðpnÞ þ γE − π2=6.
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Random record model.—In order to arrive at a more
tractable expression for Vn, we now analyze the problem in
the scaling limit p → 0, n → ∞ at fixed t ¼ pn. In this
limit the Bernoulli sequence of wet days becomes a Poisson
process of unit intensity in continuous time t. In the
mathematical literature this setting is known as the random
record model [8,29,30], see also [31,32]. For the expected
number of records (7) the limit q → 1, n → ∞ yields
hRni → μðpnÞ with

μðtÞ ¼
Z

t

0

dy
1 − e−y

y
¼ ln tþ γE þ

Z
∞

t

e−z

z
dz; ð12Þ

where the last identity can be found in [33]. The asymp-
totics are μðtÞ → t − t2=4 as t → 0 and μðtÞ → ln tþ γE as
t → ∞. Thus, the scaling function describes a crossover in
the expected number of records from an early time linear
growth hRni ≈ pn where the number of records is limited
by the number of events, to a late time logarithmic growth
hRni ≈ lnðpnÞ þ γE. Taking the scaling limit of the expres-
sion (11) is not straightforward, but eventually leads to the
relatively simple form

VnðqÞ→ μðtÞþ2

Z
t

0

dz
z
e−z½μðtÞ−μðzÞ−μðt− zÞ�; ð13Þ

where μðtÞ is given in Eq. (12) (see [28]).
Fano factor.—To quantify the correlations between

record events, we introduce the Fano factor [34] or index
of dispersion [35] defined as the ratio of the variance to the
mean of the record counting process, Fn ¼ Vn=hRni. This
ratio measures the deviation of the counting process from a
Poisson process, for which Fn ¼ 1. We first prove that Fn,
for an arbitrary time series, must be an increasing function
of n if record events are uncorrelated. Let hσmi ¼ rm
denote the record rate at step m. In the absence
of correlations between record events, hσlσmi¼rmδl;mþ
rlrmð1−δl;mÞ, which implies using (8) that Vn¼P

n
m¼1rmð1−rmÞ. As a consequence Fnþ1 − Fn ¼

Sn=hRni − Snþ1=hRnþ1i, where Sn ¼
P

n
m¼1 r

2
m. Based on

this, it is easy to show that Fnþ1 − Fn > 0 provided rnþ1 <
rm for all m ≤ n, which only requires the record rate to be
monotonically decreasing. Thus a nonmonotonic behavior
of Fn is an unambiguous signature of correlations.
Using the results from Eqs. (12) and (13), we find that in

the scaling limit the Fano factor converges to a scaling
form, FnðqÞ → Fðt ¼ pnÞ with

FðtÞ ¼ 1þ 2

μðtÞ
Z

t

0

dz
z
e−z½μðtÞ − μðzÞ − μðt − zÞ�: ð14Þ

The scaling function FðtÞ is clearly nonmonotonic, show-
ing that the strong correlations between record events
persist in the scaling limit (Fig. 1). It starts at Fð0Þ ¼ 1,
decreases with increasing t, reaches a minimum around

t� ≈ 4.4, and converges slowly back to F ¼ 1 as t → ∞. Its
asymptotic behaviors can be easily computed from the
exact expression in Eq. (14), and we obtain FðtÞ → 1 −
t=2þOðt2Þ as t → 0 and FðtÞ → 1 − π2=ð6 ln tÞ as t → ∞.
The figure also shows estimates for Fn at finite p > 0
obtained from simulations. The minimum is even more
pronounced at positive p, and the simulation results are
indistinguishable from the asymptotic prediction (14)
for p ¼ 0.02.
Comparison to precipitation data.—In order to test the

predictions of the Bernoulli model we analyzed a large set
of daily precipitation data compiled by the German weather
service (DWD). The full data set comprises rainfall
amounts from 5400 weather stations positioned throughout
Germany. Out of these, 417 stations were selected which
provided complete daily precipitation time series for the
period 1974 to 2013 [36]. The average rainfall probability
for this data set is close to p ¼ 0.5 with some variability
between stations. In order to minimize the effects of the
variability in p, we further restricted the analysis to those
stations where the time-averaged precipitation probability
lies in the interval p ∈ ½0.48; 0.52�. This leaves 144 stations
covering the 40 year period. For each station we extracted
365 time series corresponding to precipitation amounts on a
given calendar day.
Figure 2 shows the Fano factor of the number of

precipitation records obtained from the empirical data,
compared to simulations of the Bernoulli model with
p ¼ 0.5. The simulation data were averaged over 5 ×
104 runs, which is close to the total number of empirical
time series (144 × 365 ¼ 52560). We have checked that
allowing p to vary over the interval [0.48, 0.52] in the
simulations does not significantly affect the results. The
empirically determined Fano factor displays a pronounced
minimum and the overall shape is in good agreement with
the model. The remaining discrepancy at longer times is
probably not of a statistical nature and could be related to
features that are ignored in the model, such as spatial
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FIG. 1. The Fano factor of the record process obtained from
simulations (symbols) is compared to the analytic limit function
FðtÞ in Eq. (14) (full line). Note that the numerical estimates start
at F1 ¼ 1 − p.
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correlations between weather stations or trends in the
model parameters [36,37] (see also [18,23,38] for a dis-
cussion of trends in record processes).
Distribution of the number of records.—Having derived

the mean and the variance of the record number Rn, one
may naturally investigate its full distribution PðR; nÞ ¼
P½Rn ¼ R�. Exploiting the renewal structure of the record
process in the Bernoulli model, we were able to derive
a compact exact expression for the double generating
function (see [28])

X∞
n¼0

X∞
R¼0

PðR; nÞλRzn ¼ ð1 − qzÞλ−1
ð1 − zÞλ : ð15Þ

For q ¼ 0, the right-hand side reduces to ð1 − zÞ−λ, a
known result for the IICD case [39–43]. From Eq. (15), one
can in principle compute all the moments. Moreover, by
analyzing Eq. (15) for large n (with fixed p ¼ 1 − q and
R ≥ 1), we can show (see [28]) that PðR; nÞ converges to
the Poisson distribution

PðR; nÞ ≈ 1

pn
½lnðpnÞ�R−1
ðR − 1Þ! : ð16Þ

We conclude that the record occurrence events become a
Poisson process in “time” lnðpnÞ for large n, as was
observed previously for the IICD case q ¼ 0 [42,44].
Interestingly, in the limit R → ∞, n → ∞, but keeping

the ratio x ¼ R= lnðpnÞ fixed, the Poisson distribution in
Eq. (16) admits a large deviation form

PðR; nÞ ∼ e− lnðpnÞΦfR=½lnðpnÞ�g ð17Þ
with an explicit rate function

ΦðxÞ ¼ 1 − xþ x ln x; x ≥ 0: ð18Þ

Typically in statistical physics problems one finds large
deviation principles of the form ∼ exp½−LΦðR=LÞ�, where
L represents the “size” of the system. In the present
problem, the effective size L is not n, but rather the
average number of records hRni ∼ lnðpnÞ. Similar “anoma-
lous” large deviation forms appeared before in the context
of the distribution of the number of zero crossings of
smooth Gaussian fields or equivalently in the distribution of
the number of real roots of a class of random polynomials
[45–47], and more recently in the distribution of entangle-
ment in random quantum spin chains [48]. The rate
function (18) is independent of q. Typical fluctuations of
Rn are described by the quadratic approximation of the rate
function ΦðxÞ around its unique minimum at x� ¼ 1.
Substituting this quadratic form in Eq. (17), we find that
the typical fluctuations are described by a Gaussian with
mean and variance lnðpnÞ. Thus, despite the power law
correlations between the indicator variables σm, their sum
Rn ¼

P
n
m¼1 σm satisfies a central limit theorem.

Conclusions.—Motivated by the statistics of rainfall, we
have investigated a simple extension of the classic IICD
record problem where the non-negative random variables
forming the time series take the value zero with a positive
probability q > 0. Our key finding is that this induces long-
ranged correlations between record events, which lead to a
pronounced minimum in the Fano factor of the record
counting process. Importantly, our conclusions would not
change if the dry days were replaced by days with nonzero
precipitation amounts that are too small to be detected [28].
The effect that we describe therefore applies quite generally
to situations where a fraction of events is not recorded
because of measurement uncertainty or limited experimental
resolution [49]. The emergence of correlations between
record events has been observed previously, e.g., for records
drawn fromdistributions that broaden [11] or shift [12,38,50]
in time, or as a consequence of rounding effects [51]. Taken
together, these results highlight the fact that the stochastic
independence between record events in the standard IICD
setting is a highly nongeneric and fragile feature.
The comparison with the empirical data in Fig. 2 shows

that the Bernoulli model qualifies as a null model for
precipitation time series comprising daily rainfall amounts
on a given calendar day over a sequence of years. It could
also be applied to data aggregated over weeks or months,
which would however reduce the probability of dry events
and correspondingly the strength of the anticorrelation. On
the other hand, the model clearly fails to describe the time
series of rainfall amounts on consecutive days, which are
characterized by strongly correlated spells of dry and wet
days arising from large-scale weather patterns. This kind of
data can be modeled by an alternating renewal process,
where dry and wet spell lengths are drawn independently
from two different probability distributions [27]. The
record occurrence statistics is then again universal with
respect to the amount distribution pWðxÞ but depends

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 1975  1980  1985  1990  1995  2000  2005  2010

F
an

o 
fa

ct
or

year

Bernoulli model
DWD data
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explicitly on the spell length distributions. Results for this
model will be reported elsewhere [52].
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