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Based on recent progress in mathematical physics, we present a reliable method to analytically solve the
linearized Bardeen-Cooper-Schrieffer (BCS) gap equation for a large class of finite-range interaction
potentials leading to s-wave superconductivity. With this analysis, we demonstrate that the monotonic
growth of the superconducting critical temperature Tc with the carrier density n predicted by standard BCS
theory, is an artifact of the simplifying assumption that the interaction is quasilocal. In contrast, we show
that any well-defined nonlocal potential leads to a “superconducting dome,” i.e., a nonmonotonic TcðnÞ
exhibiting a maximum value at finite doping and going to zero for large n. This proves that, contrary to
conventional wisdom, the presence of a superconducting dome is not necessarily an indication of
competing orders, nor of exotic superconductivity.
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Introduction.—It is well known that the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [1]
predicts a critical temperature that increases monotonically
with the density of quasiparticles. However, since the
discovery of high-temperature superconductors, a growing
number of superconducting systems have been revealed to
possess critical temperatures, Tc, that have a nonmonotonic
dependence on either the carrier density or pressure,
including SrTiO3 [2,3], the cuprates [4–7], the pnictides
[8], and heavy fermion superconductors [9]. This non-
monotonic critical temperature presents itself as a dome of
superconductivity in the phase diagram of these systems,
and in many cases these domes appear to occur in the
neighborhood of a quantum critical point (QCP) [10,11].
This concomitance is so prevalent that it has resulted in the
often quoted rule that beneath every dome there is a QCP
of some critical order. In some systems, this is likely the
case because the presence of a QCP can induce soft
bosonic excitations which can act as a “glue” leading to
the formation of a superconducting state. However, super-
conducting domes have also been observed in doped band
insulators [12] and magic-angle graphene superlattices [13]
with no sign of competing orders. In these cases, a more
conventional explanation may be necessary.
One reason for the incredible success of so many

predictions of BCS theory can be attributed to universality,

that is, certain predictions of the theory are independent
of model details and thus accurately predicted by sim-
plified models [14]. Famous examples of such universal
features of BCS theory include [15] the ratio of the
superconducting gap at zero temperature to the critical
temperature: Δð0Þ=Tc ≈ 1.76; and the temperature
dependence of the gap for temperatures close to Tc:
ΔðTÞ=Tc ≈ 3.07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
(we set kB ¼ ℏ ¼ 1 through-

out this Letter). This being said, Tc is nonuniversal, and
accurate predictions of Tc are notoriously difficult; see
e.g., Ref. [16] for a classic reference and Ref. [17] for a
recent discussion. Therefore, it is not clear, a priori, what
universal statements can be made about the dependence
of Tc on doping or other control parameters. However,
recent developments in mathematical physics [18,19]
have significantly improved the mathematical toolkit
we can use to extract reliable analytic results for critical
temperatures from BCS-like theories.
In this Letter, we take advantage of these recent

mathematical insights [19] to address the general question:
when do superconducting domes arise in isotropic BCS
models? Surprisingly, we find that superconducting domes
arise ubiquitously whenever the electron-electron interac-
tion responsible for the superconductivity has nontrivial
spatial dependence and satisfies certain convergence cri-
teria. In this way, we show that the monotonic Tc predicted
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by BCS theory is actually an artifact of the trivial spatial
dependence of the interaction. Furthermore, we present
analytic solutions of the linearized gap equation, applicable
to a broad class of long-range BCS models, and show that
the explicit Tc equation thus obtained is numerically
accurate.
The ubiquity of these domes can be understood to arise

from an interplay between the length scale determining
the range of interaction, l, and the average interparticle
separation, ∼k−1F . At low densities, when k−1F ≫ l, the
interaction becomes effectively local, and the pairing is
well described by standard BCS theory; in this regime, Tc
grows as the density increases. Whereas, at high densities,
when l ≫ k−1F , the pairing between electrons at the Fermi
surface becomes weaker with increasing kF due to the
decay of the interaction in Fourier space, which suppresses
Tc toward zero. Therefore, in the crossover regime, where
l ∼ k−1F , a superconducting dome arises. This simple
explanation of the physics of superconducting domes
does not rely on quantum criticality or any other exotic
physics. The only necessary ingredient is a mathematically
well-behaved electron-electron interaction with nonzero
spatial range.
From a mathematical point of view, our contribution is to

extend recent results for Tc [19] from 0th order to arbitrary
order in a small parameter expansion. This extension is
of great importance for the assessment of the numerical
accuracy of results obtained using these methods.
Additionally, because we use simpler mathematical argu-
ments, we hope that the present Letter can act as a bridge
between the mathematical physics community working on
BCS theory and the broader community of physicists
working on superconductivity.
Generalized BCS model.—To study the superconducting

critical temperature, we employ the standard quantum
many-body Hamiltonian

H ¼
Z X

σ¼↑;↓

ψ†
σ;r

�
−

∇2

2m� − μ

�
ψσ;rd3r

þ 1

2

ZZ X
σ;σ0¼↑;↓

ψ†
σ;rψ

†
σ0;r0Vðjr − r0jÞψσ0;r0ψσ;rd3rd3r0;

ð1Þ

where ψ†
σ;r (ψσ;r) creates (annihilates) a fermion with spin σ

at position r, μ and m� are the chemical potential and
effective mass, respectively, and VðrÞ is an attractive
nonlocal interaction potential depending on the interpar-
ticle distance r ¼ jr − r0j.
The standard textbook BCS model corresponds to the

special case where the interaction is quasilocal in position
space VðrÞ ¼ −gδ3ðrÞ with g > 0 the coupling strength
(we write “quasilocal” because the strict local interaction
leads to diverging integrals which need to be regularized, as
discussed below). We generalize this approach by allowing
for finite-range potentials VðjrjÞ of the form

VðrÞ ¼ −gl−3Wðr=lÞ; ð2Þ

where WðxÞ is a function of the dimensionless variable
x ¼ r=l ≥ 0 normalized so that 4π

R
∞
0 WðxÞx2dx ¼ 1, and

l > 0 is the length scale associated with the decay of the
interaction in position space. Thus, in the limit l → 0, one
obtains the textbook BCS model, independent of the
function WðxÞ.
In addition to simple normalization, in this Letter we

assume that the functions WðxÞ also satisfy the two
technical conditions [19] that are as follows:

ðiÞ ŴðqÞ ≥ 0;

ðiiÞ
Z

∞

0

jWðxÞjpx2dx < ∞ for 1 ≤ p ≤
3

2
; ð3Þ

where ŴðqÞ ¼ ð4π=qÞ R∞
0 WðxÞ sinðxqÞxdx is the Fourier

transform of WðxÞ. To understand the significance of these
conditions, we note that, although the model defined in
Eq. (1) for a local potential always leads to s-wave
superconductivity, this is not the case for nonlocal poten-
tials; see Ref. [20] for counter examples. However, it is
known that, if the Fourier transform of the pairing potential,
V̂k;k0 , is nonpositive, one always obtains s-wave super-
conductivity [21,22]. This is equivalent to Eq. (3) (i).
Eq. (3) (ii) guarantees that the BCS gap equation in Eq. (4)
is well defined [21]; i.e., it rules out potentials that are too
singular or that do not decay fast enough at large distances.
Some familiar examples of functions that satisfy both of
these criteria are the Gaussian distribution, the Lorentzian
distribution, and the Yukawa potential (see Table I).

TABLE I. Examples of functionsWðxÞ determining finite-range potentials as in Eq. (2), together with their Fourier
transforms ŴðqÞ and associated functions fWðεÞ.

WðxÞ ŴðqÞ fWðεÞ
Gaussian ð2πÞ−3=2e−x2=2 e−q

2=2 2ð1 − e−ε=2Þ
Lorentzian π−2ð1þ x2Þ−2 e−jqj 2½1 − e−

ffiffi
ε

p ð1þ ffiffiffi
ε

p Þ�
Yukawa ð4πxÞ−1e−x ð1þ q2Þ−1 lnð1þ εÞ
k-box [23] ð2π2x3Þ−1½sinðxÞ − x cosðxÞ� θð1 − jqjÞ εθð1 − εÞ þ θðε − 1Þ
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Tc for finite-range potentials.—To find the supercon-
ducting critical temperature, Tc, associated with the
model in Eq. (1), we will solve the linearized BCS gap
equation [14,21]

Δðϵ; TÞ ¼ −
Z

V̂ðϵ; ϵ0ÞNðϵ0Þ tanh
ϵ0
2T

2ϵ0
Δðϵ0; TÞdϵ0; ð4Þ

where Δðϵ; TÞ is the gap function, depending on energy
ϵ ¼ ϵk ¼ ðk2=2m�Þ − μ and temperature T, NðϵÞ ¼
½2m�=ð2πÞ2�θð1þ ϵ=μÞkðϵÞ is the electronic density of
states, and V̂ðϵ; ϵ0Þ is the average of V̂k;k0 over the energy
surfaces ϵ ¼ ϵk and ϵ0 ¼ ϵk0 . With these definitions, it is
straightforward to show that V̂ðϵ; ϵ0Þ is given by

V̂ðϵ;ϵ0Þ¼θð1þϵ=μÞθð1þϵ0=μÞ

×
fWfl2½kðϵÞþkðϵ0Þ�2g−fWfl2½kðϵÞ−kðϵ0Þ�2g

4l2kðϵÞkðϵ0Þ ;

ð5Þ

where θðxÞ is the Heaviside function, kðϵÞ ¼ kF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ=μ

p
,

kF ¼ ffiffiffiffiffiffiffiffiffiffiffi
2m�μ

p
is the Fermi momentum, and fWðεÞ ¼R

ε
0 Ŵð ffiffiffiffi

ε0
p Þdε0 is a special function determined by the

interaction potential. In many cases of interest, one can
find simple explicit formulas for the function fWðεÞ; see
Table I for examples.
To put this problem in perspective, recall that, for

separable potentials of the form V̂ðϵ; ϵ0Þ ¼ −gηðϵÞηðϵ0Þ,
the energy dependence of the gap is trivially determined by
the potential Δðϵ; TÞ ¼ ΔðTÞηðϵÞ. Thus, after insertion into
Eq. (4) and canceling ΔðTÞ, one obtains an equation
involving an integral of known functions and parameters
that can be solved for T. This was the strategy employed by
BCS in their seminal work [1], using ηðϵÞ ¼ θðωD − jϵjÞ
where ωD > 0 is the Debye energy. As mentioned above,
this can be interpreted as Eq. (4) with a local potential and
an energy cutoff, ωD, introduced to regularize a diverging
integral. For nonlocal potentials satisfying Eq. (3), no such
ad hoc regularization is needed: the integral in Eq. (4) is
mathematically well defined [21]. However, the price we
must pay is computational difficulty: to solve the gap
equation in Eq. (4) for nonseparable potentials, one must
keep track of the energy dependence of the gap.
Our main result is an explicit formula for Tc in terms of

fWðεÞ, obtained by solving Eq. (4) analytically. As we will
show in the next section, Tc is given by

Tc ¼
2eγ

π
μ exp

�
−
1

λ
þ a0 þ a1λþ a2λ2 þ � � �

�
; ð6Þ

where γ is the Euler-Mascheroni constant, 2eγ=π ≈ 1.13,
the coefficients an are given by Eqs. (16) and (17), and λ is
a parameter defined as

λ ¼ −Nð0ÞV̂ð0; 0Þ ¼ 2m�

ð2πÞ2 kFg
fWð½2kFl�2Þ
½2kFl�2

: ð7Þ

As explained below, such an explicit formula for Tc can
be obtained mainly because the energy scale for super-
conductivity is exponentially smaller than the chemical
potential μ. This is true even in the low-density limit μ → 0
[24]. Indeed, it follows from our result that Tc=μ goes like
e−1=λ with λ ∝ k3Fg=μ vanishing like

ffiffiffi
μ

p
as μ → 0, and if λ

is sufficiently small, such corrections are negligible. We
stress that λ can be small even in cases where the coupling
strength, g, is large. It is an emergent small parameter in the
problem whose maximum value occurs at a finite doping
such that kF;max ¼ q0=2l, where q0 is a numerical value
determined only by the form of the interaction potential
(see the Supplemental Material [25]).
Derivation of Tc equation.—We present our method for

solving Eq. (4). This section can be skipped without loss of
continuity if one is only interested in the results.
To solve Eq. (4), we start from the ansatz

ΔðϵÞ ¼ −V̂ðϵ; 0ÞNð0ÞΔð0Þ logðΩTðϵÞ=TÞ; ð8Þ

which serves as a definition of the function ΩTðϵÞ:

ΩTðϵÞ ¼ T exp

�Z
tanh ϵ0

2T

2ϵ0
Gðϵ; ϵ0Þdϵ0

�
ð9Þ

where Gðϵ; ϵ0Þ ¼ V̂ðϵ; ϵ0ÞNðϵ0ÞΔðϵ0Þ=V̂ðϵ; 0ÞNð0ÞΔð0Þ. In
a sense, all we have done is rewrite Eq. (4); however, using
the definition of λ in Eq. (7), it is clear that Tc is given
exactly by Tc ¼ ΩTc

ð0Þe−1=λ. Therefore, the main objective
is now to obtain a general method for solving Eq. (9).
We now claim thatΩTðϵÞ has a well-defined limit T → 0,

and ΩTðϵÞ can be replaced by Ω0ðϵÞ up to negligible
corrections. To see this, consider the auxiliary quantity

Ωð0Þ
T ¼ T exp fR ½tanhðϵ0=2TÞ=2ϵ0�θðμ − jϵ0jÞdϵ0g. It is well

known thatΩð0Þ
T → ð2eγ=πÞμ as T → 0 [1,22], and it is easy

to take the limit T → 0 in the ratio ΩTðϵÞ=Ωð0Þ
T . Thus

Ω0ðϵÞ ¼
2eγ

π
μ exp

�Z
Gðϵ; ϵ0Þ − θðμ − jϵ0jÞ

2jϵ0j dϵ0
�
; ð10Þ

which is well defined because the integrand remains finite
as ϵ0 → 0. It can be proven that log½ΩTðϵÞ=Ω0ðϵÞ� vanishes
like ðT=μÞ2 for small T=μ (see the Supplemental Material
[25]). Because T=μ < Tc=μ and Tc=μ is proportional to
e−1=λ, which is negligible for sufficiently small λ, we can
replace ΩTðϵÞ by Ω0ðϵÞ in the following.
Inserting Eq. (10) to Eq. (8), for ϵ ¼ 0, we can solve

for Tc. Ignoring corrections ∝ e−1=λ, we find
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Tc¼
2eγ

π
μexp

�
−
1

λ
þ
Z

Gð0;ϵ0Þ−θðμ− jϵ0jÞ
2jϵ0j dϵ0

�
: ð11Þ

To compute Gð0; ϵ0Þ, we use

ΔðϵÞ
Δð0Þ ¼

V̂ðϵ; 0Þ
V̂ð0; 0Þ

�
1 − λ log

�
ΩTc

ðϵÞ
ΩTc

ð0Þ
��

; ð12Þ

implied by Eq. (8) and Tc ¼ ΩTc
e−1=λ. Replacing

log ½ΩTc
ðϵÞ=ΩTc

ð0Þ� by log ½Ω0ðϵÞ=Ω0ð0Þ�, ignoring cor-
rections ∝ e−1=λ, we can write this as

ΔðϵÞ
Δð0Þ ¼

V̂ðϵ; 0Þ
V̂ð0; 0Þ þ λ

Z
Kðϵ; ϵ0ÞΔðϵ

0Þ
Δð0Þ dϵ

0 ð13Þ

with the integral kernel

Kðϵ; ϵ0Þ ¼ V̂ðϵ; 0Þ
V̂ð0; 0Þ

1

2jϵ0j
�
V̂ðϵ; ϵ0Þ
V̂ðϵ; 0Þ −

V̂ð0; ϵ0Þ
V̂ð0; 0Þ

�
Nðϵ0Þ
Nð0Þ : ð14Þ

This integral equation can be solved by the following
iteration: ΔðϵÞ=Δð0Þ ¼ F0ðϵÞ þ F1ðϵÞλþ F2ðϵÞλ2 þ � � �
with

F0ðϵÞ ¼
V̂ðϵ; 0Þ
V̂ð0; 0Þ ; FnðϵÞ ¼

Z
Kðϵ; ϵ0ÞFn−1ðϵ0Þdϵ0;

ð15Þ

for n ¼ 1; 2;…. Recalling the definition ofGð0; ϵ0Þ, we use
Eq. (11) to obtain Eq. (6) with

a0¼
Z

1

2jϵ0j
�
V̂ð0;ϵ0ÞNðϵ0Þ
V̂ð0;0ÞNð0Þ F0ðϵ0Þ−θðμ− jϵ0jÞ

�
dϵ0 ð16Þ

and

an ¼
Z

V̂ð0; ϵ0ÞNðϵ0Þ
V̂ð0; 0ÞNð0Þ

Fnðϵ0Þ
2jϵ0j dϵ0 ð17Þ

for n ¼ 1; 2;… (note that all an≥0 are well defined because
the integrands in Eqs. (16) and (17) remain finite as
ϵ0 → 0).
Superconducting domes.—To gain some insight into the

universal properties of the formula for Tc, Eq. (6), in Fig. 1
we plot Tc as a function of the chemical potential, μ, [26]
for the four examples appearing in Table I, using the same
coupling constant g for each case. Although the spatial
dependence of the interaction, WðxÞ, obviously has a large
effect on the finer structure of each phase diagram, clearly,
all four examples exhibit superconducting domes. These
domes appear, despite the fact that the examples possess
wildly different spatial dependence, for example: the

Lorentzian distribution decays much more slowly in space,
and the “k-box” potential is actually oscillatory in space.
The emergence of these superconducting domes is a

direct consequence of the doping dependence of λ which
is the product of two factors: the density of states at the
Fermi level, Nð0Þ, and the interaction strength between
quasiparticles at the Fermi level, V̂ð0; 0Þ. Each of these
factors has different doping dependences, while Nð0Þ
increases monotonically with doping, V̂ð0; 0Þ gets weaker
at large doping, due to decay of the Fourier coefficients of
the interaction potential at large momenta. This can be
understood more rigorously by considering the second
equality in Eq. (7), which implies λ ∝ m�gl−1fWðεÞ=

ffiffiffi
ε

p
with ε ¼ ð2kFlÞ2 ¼ 4μ=E0. One can show that
fWðεÞ=

ffiffiffi
ε

p
→ 0 in both limits ε → 0 and ε → ∞ provided

the condition in Eq. (3) (ii) holds true. Because the behavior
of Tc is dominated by the factor e−1=λ for small λ, this
implies that Tc vanishes both in the low- and high-density
limits, as described in the introduction. Therefore, we
conclude that superconducting domes are ubiquitous in
BCS theory with finite-range potentials such that the BCS
gap equation is well defined.

FIG. 1. Plots of the critical temperature Tc as a function of the
chemical potential μ for the finite-range potential examples given

in Table I. In each case we present (blue/dashed-dotted) Tð−1Þ
c ,

computed by truncating Eq. (6) at the 1=λ order; (red/dashed)

Tð0Þ
c , computed by truncating Eq. (6) at the a0 order; and (black/

solid) in which the first order correction a1λ is included. In each
case, the latter two curves agree remarkably well, and the first is a
reasonable approximation capturing the qualitative behavior. All
energies are reported in units of E0 ¼ 1=2m�l2 where l is the
interaction range, and the coupling constant is set so that
m�g=ð2πÞ2l ¼ 0.5. The insets show the small μ (low concen-
tration) behavior of the respective Tc with the vertical line
indicating the μ value at which λ has its maximum.
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It is interesting to note that the vanishing of Tc in the
large-density limit is related to the short-distance behavior
of the potential VðrÞ: in order for the ratio fWðεÞ=

ffiffiffi
ε

p
to not

approach zero as ε → ∞, VðrÞmust have a 1=rα-singularity
at r → 0 with α ≥ 2. However, such singular potentials
violate Eq. (3) (ii), and, thus, the BCS equation in (4) is not
mathematically well defined. This means that, for well-
defined potentials with finite spatial range, the pairing
between electrons at the Fermi surface becomes weaker
at high doping due to the decay of the interaction in
Fourier space.
Although superconducting domes are ubiquitous, the

precise spatial dependence of the potential can be respon-
sible for some significant features in the finer structure of the
phase diagram. For example, in Fig. 1, we see that the
different potentials give rise to critical temperatures of very
different energy scales, differing by orders of magnitude for
the four examples. This demonstrates another key point of
our results: it is not just the coupling strength that determines
the magnitude of Tc, the precise form of the interaction
potential can make a huge difference. Additionally, we note
that, in the case of the k-box potential, if we approximate
the Tc formula by truncating the series in Eq. (6) at order
−1 or 0, the phase diagram in Fig. 1 exhibits a cusp, resulting
from the oscillatory spatial dependence of this potential.
However, this cusp disappears at order 1, illustrating the
point that, for certain potentials, the higher order corrections
can be significant even for weak coupling.
Conclusions.—BCS theory and its generalization due to

Eliashberg have provided a remarkably successful theo-
retical framework to describe many superconducting mate-
rials. Still, some properties of superconductors have
remained difficult to explain from first principles, or even
from a knowledge of the normal state. One such property is
the superconducting critical temperature Tc. In this Letter,
we have called attention to one microscopic detail that
has limited the accuracy of Tc predictions: the spatial
dependence of the pairing interaction. We presented a
reliable method to take this into account in BCS theory,
and we demonstrated its importance, both quantitatively
and qualitatively.
Importantly, we showed that a nontrivial spatial depend-

ence of the pairing interaction in BCS theory leads to
superconducting domes. Although the exact scale of Tc
depends sensitively on interaction details, we found a wide
class of “reasonable” potentials which induce domes with
TcðnÞ dependences that look remarkably similar to one
another upon scaling.
The superconducting domes we find are controlled by

the ratio of interparticle distance to the effective range of
the potential, and they do not rely on any competing order
or quantum critical fluctuations of the competing phases
in the vicinity of superconducting state. These findings
give greater confidence to the applicability of standard
BCS results and establish the interesting possibility that

superconducting domes can occur in simple BCS super-
conductors with no competing orders.

We thank Kamran Behnia, Annica M. Black-Schaffer,
Göran Grimvall, Christian Hainzl, Yaron Kedem, Tomas
Löthman, Andreas Rydh, and Robert Seiringer for helpful
discussions. We are grateful to Kamran Behnia and
Andreas Rydh for useful comments on the Letter. We also
would like to thank the referees for valuable suggestions
which helped us to improve this Letter. E. L. acknowledges
support from the Swedish Research Council (VR Grant
No. 2016-05167). The work of A. V. B. is supported by the
Knut and Alice Wallenberg Foundation, the Swedish
Research Council (VR Grant No. 2017- 03997), and the
Villum Fonden via the Centre of Excellence for Dirac
Materials (Grant No. 11744). The work of C. T. was
supported by the Swedish Research Council (VR Grant
No. 621-2014-3721).

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

[2] C. Koonce, M. L. Cohen, J. Schooley, W. Hosler, and E.
Pfeiffer, Phys. Rev. 163, 380 (1967).

[3] C. Collignon, X. Lin, C. W. Rischau, B. Fauqué, and K.
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