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We present the incorporation of a surrogate Gaussian process regression (GPR) atomistic model to
greatly accelerate the rate of convergence of classical nudged elastic band (NEB) calculations. In our
surrogate model approach, the cost of converging the elastic band no longer scales with the number of
moving images on the path. This provides a far more efficient and robust transition state search. In contrast
to a conventional NEB calculation, the algorithm presented here eliminates any need for manipulating the
number of images to obtain a converged result. This is achieved by inventing a new convergence criteria
that exploits the probabilistic nature of the GPR to use uncertainty estimates of all images in combination
with the force in the saddle point in the target model potential. Our method is an order of magnitude faster
in terms of function evaluations than the conventional NEB method with no accuracy loss for the converged
energy barrier values.
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The nudged elastic band (NEB) algorithm is the most
popular method for calculating transition states in chemical
systems [1–3]. This algorithm is used to find minimum
energy pathways (MEP) for the transition between reac-
tants and products, identifying the energy associated with
the barrier separating these two states. Many variants of the
NEB algorithm have been proposed in the last two decades
[3–10]. All of these algorithms rely on an elastic band
consisting of interpolated images of the atomic structure,
known as moving images. The images are hooked by a
spring constant and their positions are optimized by
following the gradient of the potential energy surface
(PES) while obeying the forces imposed by these springs.
A climbing image (CI), without spring forces and an added
force traveling up the gradient along the tangent of the path,
can also be included in order ensure the highest energy
point is included in the band [3]. The optimization of the
path is performed through an iterative process in which
all the images are moved and evaluated in each iteration.
The coupled iterative nature of the process is very costly,
requiring several hundred function calls for the forces even
for systems containing few images and degrees of freedom,
e.g., describing a single particle diffusion with 10 images.
Further, force evaluations can be computationally very

expensive for the first-principles electronic structure cal-
culations. For this purpose, there has been significant work
done to build machine learning (ML) surrogate models
for atomistic systems [11–16]. These methods function by
producing a surrogate model of the PES, which closely
approximates the target potential in the region of interest,
significantly reducing the number of necessary function
calls to achieve convergence. Among all of these models,

the critical steps are (i) moving the atomic positions along
the surrogate PES using traditional algebraic or derivative-
based solvers, (ii) evaluating analytically the forces at the
new positions, and (iii) updating the model with the
evaluated point(s) in order to improve the predicting
capabilities of the surrogate model. This iterative process
is performed until convergence is reached. The premise
underlying this protocol is that the optimization cost of the
PES surrogate is essentially negligible compared to the cost
of an electronic structure calculation.
The aforementioned strategy has served to accelerate

NEB calculations using neural networks (NN) as proposed
by Peterson et al. [12] and using GPR by Jónsson et al.
[13]. Both approaches have demonstrated the ability to
reduce the high computational cost of the classical NEB
methods. In particular, Jónsson and co-workers introduced
a GPR-assisted algorithm that evaluates the geometry of the
image presenting the highest uncertainty of the optimized
predicted path each time the NEB is converged in the
surrogate model PES. This is known as the one-image-
evaluation (OIE) method and surpasses in performance
the all-images-evaluated (AIE) method, which relies on
calculating all the images of the predicted NEB at each
iteration [13]. However, even in this case, all moving
images must be evaluated at least once to ensure that the
convergence criteria have been satisfied. To the best of our
knowledge this also holds true for the other NEB algo-
rithms proposed to date.
One of the main advantages of using GPR is that, as a

probabilistic model, the uncertainty estimate for the pre-
dictions can be quantified. In this Letter, we demonstrate
that the efficiency of the current NEB algorithms can be
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substantially improved by choosing an acquisition function
that optimally utilizes the prediction obtained by the GPR
model, i.e., the Gaussian posterior distribution. Here, we
propose an algorithm that uses the GPR estimates to detect
the geometries of interest to efficiently probe the PES
towards a converged MEP. Our algorithm follows the same
principles as the aforementioned OIE method proposed by
Jónsson and co-workers [13] to avoid calculating all the
images of the predicted path in each iteration. The method
presented here exploits the regression estimates to define a
convergence criterion which is independent of the number
of NEB images, therefore solving one the major problems
of the previous classical and machine learning NEB
methods. This algorithm is implemented in CATLEARN
[17], which is an open-source Python package for machine
learning applications specific to atomic systems. This is,
by design, built to interface with the atomistic simulation
environment (ASE) [18] and therefore can be easily
interfaced with the majority of the electronic-structure
calculators, such as CASTEP [19], GPAW [20], QUANTUM

ESPRESSO [21], SIESTA [22], and VASP [23,24].
Our GPR model considers the positions of the atoms

as the descriptors X ¼ ½x1;…;xN � and is trained with
their corresponding energies (e) and first derivative obser-
vations (δi), combining both observations into a vector
y ¼ ½eδ1…δN �.
The predicted function is a priori defined as the

Gaussian process:

fðxÞ ∼ GPðPðxÞ; kðx;x0ÞÞ; ð1Þ

where kðx;x0Þ is the kernel (covariance function) and PðxÞ
is the prior function.
When incorporating first derivative observations to the

GP, the covariance matrix takes the form

KðxÞ ¼
� Kðx;xÞ Kgdðx;xÞ
Kgdðx;xÞ⊤ Kddðx;xÞ

�
;

with elements of the block matrix being the covariance
between the coordinates [Kðx; xÞ], and partial derivatives
of the covariance with respect to the first coordinate
[Kgdðx;xÞ], second coordinate [Kgdðx;xÞ⊤], and the first
and second set of coordinates [Kddðx;xÞ]. A more detailed
explanation of incorporating derivative observations into
GPR can be found in Ref. [25].
Our dataset is defined as D ¼ ffxn; en; δn; θggNn¼1,

where θ contains the set of hyperparameters of the model.
The predicted mean and variance of the GP are given by

E½fðxÞjD� ¼ kðxÞ½KðxÞ þ σ2nI�−1y ð2Þ

and

V ½fðxÞjD� ¼ kðx;xÞ − kðxÞ½KðxÞ þ σ2nI�−1kðxÞ; ð3Þ

respectively, where I is the identity matrix and σ2n is a
regularization parameter. The predicted mean [Eq. (2)]
provides the prediction of the energy for a given position
while the predicted variance [Eq. (3)] offers an estimate of
the uncertainty of the same process. The predicted forces
are computed using finite differences with a step size of
10−4 Å. The model parameters selected to describe the GP
are included in the Supplemental Material [26].
A comparison between the classical NEB and our

machine learning accelerated (ML-NEB) methods on the
two-dimensional Müller-Brown potential is shown in
Fig. 1. In this example, we used 9 moving images to
describe the transition from the initial state (IS) to the final
state (FS). In the classical NEB method, final convergence
is achieved when the maximum forces of the structure of
the ith NEB image (max jFNEB

i j) perpendicular to the path
are below the convergence criteria. This convergence
criterion (max jFNEB

i j < 0.05 eV=Å) is satisfied after 243
force calls with an energy barrier of 1.060 eV [Fig. 1(a)].
The same energy barrier value is obtained by our ML-NEB
method after only 11 function calls [see Fig. 1(b)]. In
Fig. 1(b) we illustrate the evolution of the predicted PES
and energy profile along the reaction coordinate (red
circles) from the IS to the FS obtained after 1, 3, 10,
and 11 iterations of our surrogate machine learning model.
Our algorithm starts by evaluating an image along the
initial interpolated path that is located at one-third distance
from the end point with highest energy. This prevents
numerical problems during the optimization of the NEB
due to a poor initial representation of the predicted PES
when the model is trained with only the two end points of
the transition. The model is retrained with the energy and
forces of the previously evaluated configurations each time
a function evaluation is performed. After training the
model, the initial path is optimized on the predicted PES
using a velocity-Verlet molecular dynamics algorithm
(MDMin, as implemented in ASE). Once the elastic band
is converged, the energy and uncertainty estimate [blue bars
in Fig. 1(b)] for each image along the path are stored. On
the basis of these predicted values, an acquisition function
suggests the next structure to evaluate [see white circles in
Fig. 1(b)]. In this example, the acquisition function targets
the image along the predicted path with maximum uncer-
tainty until the uncertainty of all the images (max juij) is
decreased below 0.05 eV. Once this uncertainty conver-
gence criterion is reached, the acquisition function targets
the highest energy image (including the uncertainty esti-
mate), until the maximum force of all the relaxed atoms
for the last evaluated image goes below the convergence
criteria (max jfij < 0.05 eV=Å). This ensures that the
saddle point is obtained with the same accuracy as the
classical CI-NEB method.
We demonstrate the performance of our algorithm on

three different atomic systems [see Figs. 2(a)–2(c)] using
the effective medium theory (EMT) [31]. We apply our
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FIG. 1. Comparison between the (a) classical CI-NEB and (b) machine learning NEB (ML-NEB) methods. The performance of both
algorithms is illustrated in the two-dimensional Müller-Brown PES. Predicted MEP is included at the bottom of each PES to show the
evolution of the energy profile for the elastic band with respect to the number of function calls.

FIG. 2. MEP for the (a) diffusion of a Au atom on an Al(111) surface, (b) diffusion of a Pt adatom on a stepped Pt surface across the
two terraces and (c) rearrangement of a Pt heptamer island adsorbed on a Pt(111) surface obtained for the algorithms: FIRE, LBFGS,
MDMin, and ML-NEB (using the three acquisition functions presented in the text). The number of function calls required for each
algorithm to converge are shown in bold between brackets. The top and side views of the optimized initial and final states for each
transition along with their corresponding saddle points are included at the top of each composition. The undercoordinated atoms of the
Pt step edge in (b) are highlighted in blue.

PHYSICAL REVIEW LETTERS 122, 156001 (2019)

156001-3



algorithm using three different acquisition functions: The
first (Acq. 1) alternates between evaluating the image with
the maximum uncertainty and the image with the maximum
expected energy value for the transition in each iteration of
the surrogate model. This quasirandom sampling mecha-
nism is performed until both convergence criteria are
satisfied (max juij<0.05 eV and max jfij < 0.05 eV=Å).
The second acquisition function (Acq. 2) is as described
above for the example in Fig. 1(b). The last (Acq. 3) is
made of a combination of the two previous acquisition
functions, behaving the same as Acq. 2 until the uncertainty
convergence criterion is satisfied, and then transitions to
Acq. 1 until finding a saddle point.
Included in Fig. 2 are the optimized paths for three

different transitions using FIRE [32], LBFGS [33], and
MDMin [18] as implemented in ASE, along with the ML-
NEB implementation using the three acquisition functions
described above. The different algorithms provide virtually
identical estimates of the maximum transition state energy.
The same energy barrier values are also obtained when
using the classical and ML-NEB algorithms, within
numerical precision. The ML-NEB method performs con-
sistently better in terms of function evaluations than the
classical algorithms. In particular, when using Acq. 2, the
ML-NEB algorithm requires approximately 5–25 times
fewer function calls to achieve convergence than the
classical algorithms (see values in brackets in Fig. 2).
The improved performance of the acquisition function that
makes the most use of the uncertainty estimates also
illustrates the potential for GP to accelerate the NEB over

other machine learning algorithms that do not offer an
uncertainty estimate.
The performance of the ML-NEB method is also tested

on the previous systems by varying the number of NEB
images (see Fig. 3). The number of function calls required
to optimize the paths increases exponentially when using
the classical implementation of the CI-NEB method.
In contrast, the number of function evaluations required
by the ML-NEB algorithm is independent of the number of
moving images chosen to optimize the path. This allows for
the number of images to be optimally chosen while
performing the NEB optimization at no added cost, and
can be done by applying similar principles to those
proposed by Hammer et al. [10] for the classical NEB.
In order to quantify the error magnitude of the GPR

estimates, we calculated the energy of the predicted images
on the target potential (EMT) using the same geometries as
the images along the optimized path. We define the average
error of each path as the absolute value of the difference
between the energy calculated analytically and GPR
predicted energy for the ith image along the predicted
path. For the three acquisition functions, the maximum
error of the predictions lies below the uncertainty con-
vergence criterion imposed (0.05 eV). The two acquisition
functions that exploit the maximum uncertainty estimate
before targeting the saddle point, Acq. 2 and 3, performed
better than Acq. 1 which alternates targets between the
maximum energy and the maximum uncertainty estimates
in terms of function evaluations and the accuracy of the
predicted path.

FIG. 3. Comparison of the number of function evaluations required to achieve convergence with an increasing number of images for
the different classical and machine learning accelerated methods. The benchmark is performed with the classical method (using the
FIRE, LBFGS, and MDMin algorithms) and the ML-NEB method (using the three acquisition functions described in the main text). The
lower panels show the average error of the predicted energy along the path obtained by the three acquisition functions with respect to the
target value of the function at the same geometric positions as the ones predicted by the ML-NEB.
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For stability, the calculations performed using FIRE,
MDMin, and ML-NEB converged for all three systems.
However, we note that the LBFGS algorithm seems to
struggle to find an optimal minimum for the transition
represented in Fig. 2(b), except when using 11 images. We
have also encountered convergence issues with MDMin
when performing density functional theory (DFT) calcu-
lations for validation [26]. Our algorithm has also been
tested on more complex reactions involving bond breaking
or forming using DFT [34,35] as implemented in VASP,
also included in the Supplemental Material [26]. Through
this variety of examples, our ML-NEB method shows great
improvement with respect to the classical optimization in
terms of robustness, accuracy, and computational cost.
A good description of a NEB path ultimately relies on

including a sufficient number of images. Trying to describe
the MEP with a small number of images can lead to
convergence problems when optimizing the band on com-
plex energy landscapes [36]. Here, we have presented a
machine learning surrogate model that uses the GPR
estimates to obtain a converged NEB path that is indepen-
dent of the number of moving images composing the path.
This offers a dramatic improvement in terms of the
robustness and efficiency with respect to the classical
NEB methods.
In this work, we propose three different acquisition

functions in an effort to optimize the decision making
protocol in order to obtain an accurate predicted path using
the smallest possible number of function calls. We show
that the learning rate is driven by the form of the acquisition
function and a good selection is dependent on a balance
between exploration (reducing the uncertainty of the
predicted path) and exploitation (trying to converge the
saddle point). The result of this work is an algorithm which
not only surpasses existing methods in saving function
calls, but also improves the robustness in converging an
accurate path with respect to the other algorithms, by
decoupling the cost in the number of function evaluations
from the number of moving images on the NEB.
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