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Exploring the configurational space of specific origami patterns [e.g., Miura-ori (flat surface with
parallelogram crease patterns), eggbox] has led to notable advances in science and technology. To augment
the origami design space, we present a pattern, named “Morph,” which combines the features of its parent
patterns. We introduce a four-vertex origami cell that morphs continuously between a Miura mode and an
eggbox mode, forming an homotopy class of configurations. This is achieved by changing the mountain
and valley assignment of one of the creases, leading to a smooth switch through a wide range of negative
and positive Poisson’s ratios. We present elegant analytical expressions of Poisson’s ratios for both in-plane
stretching and out-of-plane bending and find that they are equal in magnitude and opposite in sign. Further,
we show that by combining compatible unit cells in each of the aforementioned modes through kinematic
bifurcation, we can create hybrid origami patterns that display unique properties, such as topological mode
locking and tunable switching of Poisson’s ratio.
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Origami-inspired geometries have been used to design
metamaterials with unusual properties [1–7]. The aestheti-
cally pleasant patterns and shapes typically start from 2D
sheets to construct 3D structures according to mountain and
valley assignments encoded in the crease patterns. In this
Letter, we present a new periodic pattern, named Morph,
with a nondevelopable degree-4 unit cell that allows a
certain crease to switch its mountain and valley assignment,
leading to properties such as an arbitrarily tunable
Poisson’s ratio that spans from positive to negative and
topological mode locking.
Owing to their special geometries, origami metamate-

rials usually display interesting behavior [8–11]. For
instance, the Miura-ori exhibits a negative Poisson’s ratio
under in-plane deformations [9], while the standard eggbox
pattern has a positive Poisson’s ratio [12,13]. In compari-
son, our proposed pattern morphs continuously between a
Miura mode and an eggbox mode (see Fig. 1), thus
behaving as a single material possessing both positive
and negative Poisson’s ratio. Poisson’s ratio switching is an
enticing phenomenon that has only been found recently for
selected mechanical metamaterial designs, including nano-
plates [14], reentrant origami tube assemblages [15],
bistable auxetics [16], kirigami structures [17], and soft
networks [18]. Compared to other designs, the Morph
excels on having a wider tunable range of Poisson’s ratio,
theoretically from negative infinity to positive infinity. In
addition, the Morph unit cells can be assembled to form 2D
tessellations in which the unit cell can stay either in the
Miura or eggbox mode, which allows the formation of

hybrid patterns—achieved by harnessing kinematic
bifurcation.
In their most general form, the panel angles α and β of

the Morph pattern are two independent geometric param-
eters (see Fig. 1), thereby enriching the origami design
space, unlike the standard cases such as eggbox (β ¼ α) or
Miura-ori (β ¼ π − α) whose vertex geometry is dictated
by just a single parameter α. Additionally, for α ≠ β, the
degree-4 nondevelopability feature that the Morph shares
with the standard eggbox makes it a generalization of the
basic pattern. Theoretically, Poisson’s ratio of the Morph
sweeps the whole spectrum of real numbers as it morphs
from one flat-folded state to the eggbox mode, to the Miura
mode, and to another flat-folded state, as shown in Fig. 1.
The red crease in Fig. 1 changes its mountain and valley
assignment as it transitions from eggbox mode to the Miura
mode, which is made possible owing to the fact that the
angle β is smaller than the angle α of the other two panels.
By contrast, the standard eggbox or Miura-ori patterns do
not allow any crease to switch its mountain and valley
assignment.
To parametrize the rigid origami behavior of the

Morph unit cell, we define angles ϕ, ψ as the angles
between opposing crease lines and denote the dihedral
angles between the panels as γ1, γ2, γ3, γ4, as shown in
Fig. 2(a). The unit cell has a degree-4 vertex, and thus it is a
single degree of freedom system. The dihedral angles are
related to one another and to ϕ, ψ . We derive that γ2 ¼ γ4,
as 0 ≤ γ2, γ4 ≤ π, indicating the existence of a plane of
symmetry passing through the vertices denoted by O4, O5,
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andO6. While 0 ≤ γ1 < π, the ability of the creaseO5O6 to
switch between mountain and valley allows γ3 to vary from
0 to 2π. In the flat-folded state I, ϕ ¼ ϕmax ¼ αþ β and
γ3 ¼ 0. For 0 < γ3 < π, the unit cell is in eggbox mode and
O5O6 is a mountain crease. As γ3 passes through π, O5O6

transitions from a mountain to a valley crease and
the panels on either side of O5O6 become coplanar. In
the transition state, angle ψ also reaches its maximum
ψmax ¼ 2β. For π < γ3 < 2π, the unit cell is in Miura mode
and O5O6 is a valley crease. Finally, as γ3 → 2π, the unit
cell approaches the flat-folded II state with ϕ ¼ ϕmin ¼
α − β. Let us define two intermediate variables

ξ ¼ cos β − cos α cosϕ ¼ sin α sinϕ cosðγ1=2Þ; ð1Þ

ζ ¼ cos α − cos β cosϕ ¼ sin β sinϕ cosðγ3=2Þ: ð2Þ

The configurational space of the Morph unit cell is then
fully described by ϕ (0 ≤ ψ ≤ 2β < π) and ψ (0 < α − β ≤
ϕ ≤ αþ β < π) through the following equation:

cosψ ¼ cos 2αþ 2ξ2 csc2 ϕ; ð3Þ

which is presented for various choices of panel angles in
Fig. 2(b). We can observe in Fig. 2(b) that, as α → β, the
Miura mode vanishes.
We define Poisson’s ratio for in-plane stretching as the

tangential ratio of the orthogonal strains measured by the
change of width W and length L of a unit cell [8,9], which
are given by

W ¼ 2c sinðψ=2Þ; L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 − 2ab cosϕ

q
: ð4Þ

To assure the bounding box of a unit cell being ortho-
rhombic, which requires, for example, ðO1 O4 O7Þ⊥
ðO1 O7 O9O3Þ and ðO1O2O3Þ⊥ðO1 O7O9O3Þ, the panel
dimensions a and b are constrained by b ¼ aj cos α= cos βj
(see Sec. I of the Supplemental Material [20]). The
analytical expression for the in-plane Poisson’s ratio when
stretching in the L direction is

νsWL ¼ −
dW=W
dL=L

¼ 4c2L2

a2W2

���� cos βcos α

���� ξζ

sin4 ϕ
: ð5Þ

As plotted in Fig. 2(c), it is clear that the stretching
Poisson’s ratio is negative in the Miura mode and positive
in the eggbox mode, with a smooth transition near zero.
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FIG. 2. Geometric configuration and in-plane mechanics of the
Morph pattern. (a) Schematic of the unit cell with the description
of geometric parameters and vertices. (b),(c) The configuration
space and Poisson’s ratio in stretch, respectively, for different
choices of α considering αþ β ¼ 100°. The solid and dashed
lines represent the eggbox and Miura modes, respectively.
(d) Stretching stiffness in W and L directions for α ¼ 60°,
β ¼ 40°. The markers represent numerical results from origami
structural analyses using the bar-and-hinge reduced-order model
[19]. We assume that a ¼ c ¼ 1.
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FIG. 1. (Top) Expanded design space of the Morph pattern
(yellow shading) with standard eggbox (red line) and Miura-ori
(blue line) as particular cases. (Middle) Fundamental modes of
the Morph pattern: eggbox mode (left) and Miura mode (right).
(Bottom) Configuration space showing transition of the Morph
unit cell from one flat-folded state to another (see Supplemental
Video 1). The crease line shown in red morphs from a mountain
fold in the eggbox mode to a valley fold in the Miura mode.
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Theoretically, νsWL approaches −∞ or þ∞ in the two flat-
folded limits, thereby leading to a wide range of tunability.
We note that, since W2=c2 and L2=a2 do not depend on
the length dimensions of the unit cell, Poisson’s ratio of the
unit cell depends only on α, β, and ϕ, making it a purely
geometric quantity that is also independent of the length
scale of the pattern.
Accordingly, assuming that the energy of the unit cells is

composed of deformation from linear elastic rotational
hinges along the crease lines, we can derive the linear in-
plane stretching stiffness of the pattern. Denoting kf as the
rotational spring modulus, the stored energy of the system
is given by

Us ¼
kf
2
½aðγ1 − γ1;0Þ2 þ bðγ3 − γ3;0Þ2 þ 2cðγ2 − γ2;0Þ2�;

ð6Þ

where γ1;0, γ2;0, and γ3;0 are the neutral dihedral angles (in
the undeformed state). Expressing γ2 and γ3 in terms of γ1,
the stiffnesses along the L direction is derived as

KL ¼ d2Us

dL2

����
L¼L0

¼ d2Us

dγ21

�
dL
dϕ

dϕ
dγ1

�
−2
����
γ1¼γ1;0

: ð7Þ

Similarly, we can get the stiffness along the W direction
(see Sec. II of the Supplemental Material [20]). As shown
in Fig. 2(d), the in-plane stiffness in the W direction
(denoted by KW) is minimum at flat-folded states and
reaches maximum at the transition state. Interestingly,
while KL is maximal at flat-folded states, it is only close
to minimum at the transition but slightly away towards the
eggbox mode.
As revealed in previous research [8,9,12], a kinematically

single degree of freedom (d.o.f.) origami pattern may
experience out-of-plane deformation, other than pure (in-
plane) folding, if compliance of panels is taken into
consideration. Accordingly, we define Poisson’s ratio in
bending as the ratio of principal curvatures (νbWL ¼ −κW=κL)
and find that the Morph pattern features a saddle-shaped
geometry in theMiura mode and a dome-shaped geometry in
the eggbox mode [see Figs. 3(a) and 3(b)]. It is intriguing
that the Morph pattern exhibits distinct Poisson’s ratio in
stretching and bending, similar to what have been found,
separately, with the standard Miura-ori and the standard
eggbox patterns. Here we show that, just like its two extreme
cases [9,12], the Morph pattern displays Poisson’s ratio with
opposite sign but equal magnitude in stretching and bending.
We can analytically calculate the principal bending curva-
tures by allowing each panel of the origami pattern to bend
along one of its diagonals [9], under the assumption of
infinitesimal deformation.
We add infinitesimal rotations δ1, δ2, δ3, δ4 as shown in

Fig. 2(a) to provide further degrees of freedom to the

system in order to simulate bending of panels. Hence, there
are in total four extra degrees of freedom being added, yet
isometric deformation is still ensured. Bending of the unit
cell shall preserve the orthogonality between the two sides
of a unit cell (i.e., L and W). Thus, we enforce that the
normals of the side triangles of a unit cell after bending
[e.g., ΔðO0

1 O
0
2 O

0
3Þ, ΔðO0

7O
0
8O

0
9Þ, ΔðO0

1O
0
4O

0
7Þ,

ΔðO0
3 O

0
6O

0
9)] remain orthogonal to their respective side

directions, which leads to three independent constraints,

aξ
δ1
l1

¼ bζ
δ2
l2

; bζ
δ3
l3

¼ aξ
δ4
l4

;
δ1
l1

¼ δ4
l4

; ð8Þ

where l1, l2, l3, and l4 are the lengths of the diagonals
O2O4, O2O6, O6O8, and O4O8, respectively. Thus, the
bending is uniquely defined up to a single d.o.f. These
constraints automatically ensure that the deformed unit cell
can be periodically tessellated in the two principal direc-
tions (i.e.,L andW), that is,∠ðO0

1O
0
2O

0
3Þ ¼ ∠ðO0

7O
0
8O

0
9Þ

and ∠ðO0
1O

0
4 O

0
7Þ ¼ ∠ðO0

3 O
0
6 O

0
9Þ.

The curvatures in L andW directions are determined by

κL ¼ −
jθ147j � jθ369j

L
; ð9Þ

κW ¼ −
jθ789j þ jθ123j

W
; ð10Þ

where the þ or − in Eq. (9) for κL depends on whether the
system is in the eggbox mode or the Miura mode,
respectively, and θ147, θ369, θ789, and θ123 are the tilt angles

(c)

(a) (b)

(d)

FIG. 3. Out-of-plane bending of the Morph pattern. (a),(b) Bent
shapes of the pattern in eggbox and Miura modes, respectively,
obtained using the bar-and-hinge origami model. (c),(d) Triangu-
lar face tilts creating a net angle change across length L of
the Morph pattern in eggbox and Miura modes, respectively. The
new coordinates of vertices O7 andO9 after bending (i.e., O0

7 and
O0

9, respectively) can be calculated using the Rodrigues rotation
formula [21].
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[see Figs. 3(c) and 3(d)]. The bending Poisson’s ratio is
then obtained as (see Secs. III and IV of the Supplemental
Material [20])

νbWL ¼ −
κW
κL

¼ −
4c2L2

a2W2

���� cos βcos α

���� ξζ

sin4 ϕ
: ð11Þ

Comparing Eq. (5) with Eq. (11), we obtain the elegant
result νbWL ¼ −νsWL for the Morph pattern. The above
expression reduces to standard Miura-ori [8,9] and eggbox
[12] cases as two particular cases for appropriate choices
of panel angles α and β (see Secs. V and VI of the
Supplemental Material [20]).
The aforementioned bending mode allows us to analyti-

cally derive the bending stiffness of the Morph pattern,
which has similar characteristics to the in-plane stretching
stiffness (see Fig. S8 of the Supplemental Material [20]).
By performing numerical simulation using the reduced-
order bar-and-hinge model [19], we find that the analytical
model agrees well with the numerical simulations with
very small discrepancies, which further strengthens the
assumption that infinitesimal rotations about panel diago-
nals are sufficient to characterize first-order bending
response of the Morph pattern.
Owing to its mode switching feature, the Morph pattern

unit cells do not have to be tessellated with uniform
configuration. It is kinematically admissible to couple
the Morph unit cells into a hybrid pattern, such that there
are both Miura mode cells and eggbox mode cells in a
single tessellation, as demonstrated in Figs. 4(a) and 4(b).
The feasibility of such a system can be understood by
noting that, in Fig. 2(b), a given ψ can correspond to the
angle ϕ in either the eggbox mode or the Miura mode,
which we denote as ϕe or ϕm, respectively. These angles are
given by ϕe ¼ ϕ1 þ ϕ2 and ϕm ¼ ϕ1 − ϕ2, where ϕ1 and
ϕ2 are as shown in Fig. 4(c) and are given by cosϕ1 ¼
cos α= cosðψ=2Þ and cosϕ2 ¼ cos β= cosðψ=2Þ (see
Sec. VII of the Supplemental Material [20]).
In Fig. 4(c), we show that one can smoothly deform a

homogeneous Morph pattern to a hybrid pattern using rigid
origami motion (no panel bending). By compatibility, all
the unit cells have the same ψ , i.e., ψm ¼ ψe ¼ ψ . Also,
when ϕm ¼ ϕe, all the unit cells of the pattern are either in
the Miura mode or the eggbox mode, depending on
whether ϕ ¼ ϕm ¼ ϕ1 − ϕ2 or ϕ ¼ ϕe ¼ ϕ1 þ ϕ2, respec-
tively. In the figure, these configurations are represented
by the straight line in blue and red colors, respectively. As
we move up the blue line, the ϕm increases and reaches
the transition point [which is ϕT ¼ cos−1ðcos α= cos βÞ]
between Miura and eggbox modes. At this point, we note
that there is kinematic bifurcation in the configuration
space, which could either move all the unit cells into the
eggbox mode by uniformly increasing the angle ϕ further
across all cells or switch some of the strips back into Miura
mode and therefore generate hybrid patterns represented by

the green curve in the figure. This process is also demon-
strated through animations and partly through physical
testing in Videos 2 and 4, respectively, of the Supplemental

FIG. 4. Hybrid origami assemblages associated with the Morph
pattern. (a) Alternating strips of Miura (M) and eggbox (E)
modes. (b) Half pattern with strips in Miura (M) mode and the
other half in eggbox (E) mode. (c) Creation of hybrid patterns
from the Morph through kinematic bifurcation. (d) Change of
Poisson’s ratio with respect to varying number of Miura mode
strips (nm) in a hybrid mode with 100 × 100 unit cells. The
notation νsWL;h denotes Poisson’s ratio under stretch for the hybrid
pattern. (c),(d) We assume α ¼ 60°, β ¼ 40°. (e),(f) Mode locking
due to extension in L direction when νsWL;h > 0. The positive
global Poisson’s ratio implies contraction in the W direction,
resulting in decrease of ψe and ψm. The oppositely signed unit
cell Poisson’s ratios of the two modes indicates that while ϕe
increases, ϕm decreases, meaning the Miura mode cells are
axially contracting, opposite to the global axial deformation. The
Miura mode cells with decreasing ϕm are locked because such
cells can no longer smoothly transition to their eggbox mode in a
rigid origami motion. (f) Contrasting global and local deforma-
tions that occur in hybrid patterns leading to mode-locking
behavior. (e),(f) The green lines represent the panel diagonals,
whose projections provide a clean way of sketching the motions.
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Material [20]. It can be seen that, along the green curve, ϕm
reduces and ϕe increases, as to be expected from Fig. 2(b),
for a compatible ψ , across the two types of unit cells in
the system.
Depending on the coupling mode of the hybrid pattern,

the tessellated sheet exhibits a different Poisson’s ratio, νsWL;h

[see Eq. (S98) of the Supplemental Material [20] ]. There
exists a transition point when νsWL;h varies from positive
extremum (all unit cells in eggbox mode) to negative
extremum (all unit cells in Miura mode), which, however,
does not happen when the number of Miura mode and
eggbox mode strips are the same, due to unequal contribu-
tions from both modes. We consider a system with
100 × 100 cells and increase the number of Miura mode
cells (in strips) along the L direction (denoted as nm) from 0
to 100 [see Fig. 4(d)]. For a given pattern, the switching of
Poisson’s ratio can be tuned to occur at different fold angles
by smoothly modifying the number of Miura mode strips in
the system (see Sec. VII B of the Supplemental Material
[20]), which renders the Morph pattern reprogrammable.
The hybrid patterns also exhibit interesting behavior in

bending due to the combined action from Miura and
eggbox mode cells (see Video 3 of the Supplemental
Material [20]). For example, a hybrid pattern with alter-
nating Miura and eggbox mode strips bends into a dome
shape [Fig. 4(a)], whereas that with a set of Miura mode
strips adjacent to one another bends into a complex
geometry that has both saddle and dome shapes [Fig. 4(b)].
The interplay between the contrasting Poisson’s ratios of

the eggbox and Miura mode unit cells coupled with the
global Poisson’s ratio of the hybrid pattern leads to mode-
locking behavior. The most obvious mode locking is the
tensile mode locking (demonstrated in Video 1 of the
Supplemental Material [20]). For certain types of hybrid
modes, if we stretch the hybrid pattern along the L (axial)
direction, the Miura mode cells, which normally would
smoothly transition into eggbox mode under stretching,
would rather lock themselves in Miura mode and fold
toward flat-folded state II. Tensile mode locking happens
when a hybrid pattern displays a positive Poisson’s ratio
globally, such that it shrinks in the lateral direction under
stretching. For a Miura mode unit cell, this means that it
must contract in the axial direction (as well as the lateral
direction), despite the fact that the global pattern is
expanding in the axial direction in which it is stretched,
as illustrated in Fig. 4(f). Similarly, compressive mode
locking happens to eggbox unit cells when a hybrid pattern
with globally negative Poisson’s ratio is contracted (see
Sec. VII C of the Supplemental Material [20]). We remark
that the mode locking of a hybrid Morph pattern is
topological. It locks the mountain and valley assignment
of certain unit cells, but still allows the pattern to fold
smoothly as a rigid origami to the flat-folded states. This
is different from motion locking [22] where the panels
come into contact with each other, hindering the rigid

foldability and preventing the pattern from reaching the
flat-folded state.
The Morph pattern exhibits morphing characteristics by

breaking the mountain and valley assignment, which leads
to smooth switching of Poisson’s ratio across a very wide
range of negative to positive values and topological mode
locking as a consequence of kinematic bifurcation. Our
analysis reveals that the Morph pattern exhibits Poisson’s
ratio with equal magnitude but opposite sign when subject
to in- and out-of-plane deformations. Moreover, we discuss
hybrid patterns that can be created by coupling Morph unit
cells in distinct modes, creating a tessellation with reprog-
rammable Poisson’s ratio and topological mode locking.
The locking feature of the hybrid patterns can be useful in
creating structures with multistability [3]. We envision that
hybrid patterns can also have many applications in topo-
logical mechanics due their ability to transform the sym-
metry of the system under in-plane deformations [23,24].
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