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The excitation mechanism for low-n edge harmonic oscillations in quiescent H-mode regimes is
identified analytically. We show that the combined effect of diamagnetic and poloidal magnetohydrody-
namic flows, with the constraint of a Doppler-like effect of the ion flow, leads to the stabilization of short
wavelength modes, allowing low-n perturbation to grow. The analysis, performed in tokamak toroidal
geometry, includes the effects of large edge pressure gradients, associated with the local flattening of the
safety factor and diamagnetic flows, sheared parallel and E × B rotation, and a vacuum region between
plasma and the ideal metallic wall. The separatrix also is modeled analytically.
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Introduction.—Tokamak high-confinement (H-mode)
regimes are attractive operating scenarios for fusion reac-
tors because of their long energy confinement time [1]. The
large edge pressure gradients, which characterize H-mode
plasmas, favor the formation of short wavelength magneto-
hydrodynamic (MHD) perturbations called edge localized
modes (ELMs) [2]. Rapid energy and particle expulsions
are usually associated with ELMs. Though this can be
beneficial for impurity control, ELMs deposit unacceptable
peak heat loads on the divertor target causing a severe
deterioration of the plasma facing components. This has
motivated a lively line of research focused on the develop-
ment of sustained high-confinement regimes with intrinsi-
cally no ELMs.
One of the most promising high-performance naturally

ELM-free operating regimes is the so-called quiescent high-
confinement (QH) mode [3–5]. QH scenarios are usually
observed at low edge collisionality (ν�e < 0.3) over a fairly
broad range in q95 (3≲ q95 ≲ 6) [6,7]. At low ν�e, large edge
pressure gradients are associatedwith a significant bootstrap
contribution to the current. In QH plasmas, ELMs are
suppressed and replaced by low-n steady mild MHD
perturbations called edge harmonic oscillations (EHOs).
These have been observed in DIII-D [4,6–8], ASDEX-U
[5,9], JET [10], and JT-60U [11]. The edge particle transport
is enhanced by EHOs, thus allowing density control and
potentially ash removal without the impulsive heat load
problem [6,12]. EHOs are dominantly low-n perturbations
(usually n ∼ 1; 2) accompanied by weaker higher-n modes
up to n ∼ 10 [5,7,8]. A single EHO harmonic n rotates with
frequency nΩped (Ωped is the plasma toroidal rotation
frequency at the pedestal top) [3,10,13].
The excitation mechanism of such instabilities is still

unclear. Previous theoretical interpretations suggested that

short wavelength modes exhibiting infernal features
[13–16], though dominant in the linear phase, were sup-
pressed nonlinearly and superseded by steady low-n modes
[17,18] with no significant effects of the parallel flow
[17,19]. Recent experimental findings point to the E × B
shearing rate as the key ingredient for the development of
the characteristics of these oscillations [19]. Indeed numeri-
cal investigations of QH-mode DIII-D plasma discharges
with sheared E × B flows showed that low-n modes are
linearly dominant and are eventually sustained in the
nonlinear stage at moderately low amplitude [7,20–24].
In this Letter, the specific physical mechanisms which

allow low-n EHOs to emerge are identified by extending
the analysis of Ref. [25] within the infernal model frame-
work. Features of both external kink and infernal modes are
required, viz. vacuum between plasma and wall (external
kink) and a region of large pressure gradient and low
magnetic shear (infernal). Our new analytic work focuses
on the linear stability of moderately low-n ideal external-
infernal (exfernal) modes with the inclusion of toroidal
effects and toroidal and poloidal flows (both MHD and
diamagnetic). It shows that short wavelength modes are
entirely suppressed. Hence, the linear calculations show
that ELM-free H-mode regimes are established by robustly
preventing infinitesimally small amplitude short wave-
length modes.
Physical model.—Let us analyze small inverse aspect

ratio tokamak geometry (ε ¼ a=R0 ≪ 1, where R0 and a
are the major and minor radii, respectively), with shifted
circular toroidal surfaces. We consider a low β ¼ 2μ0p=
B2
axð∼ε2Þ plasma, where p is the pressure and Bax the

magnetic field strength on the axis. A right-handed straight
field line coordinate system ðr; ϑ;φÞ is introduced, where
r is a flux label with the dimensions of length, ϑ
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(counterclockwise in the poloidal plane) and φ are the
poloidal-like and toroidal angles, respectively, with contra-
variant basis vectors (∇r;∇ϑ;∇φ). We assume that addi-
tional effects (i.e., nonstatic or beyond MHD, e.g.,
diamagnetic) do not alter to leading order the standard
static equilibrium (whose associated metric tensor coef-
ficients can be found in Ref. [26]). The equilibrium
magnetic field in the plasma is B ¼ T∇φ − ∇ψ × ∇φ,
where ψ is the poloidal flux.
The plasma is described by the ideal drift-MHD

equations [27]:

ρðdtvþ v� · ∇v⊥Þ ¼ −∇pþ J × B; ð1Þ

∂tB ¼ ∇ × ðv × BÞ; ð2Þ

∂tpþv ·∇pþΓp∇ ·vi¼0; ∂tρþ∇ ·ðρviÞ¼0; ð3Þ

where dt ¼ ∂t þ v · ∇, v and v� ¼ miB × ∇p=ðeρB2Þ (mi is
the ion mass) are the plasma MHD and ion diamagnetic
velocities, respectively, with vi ¼ vþ v�, ρ is mass density,
J ¼ ∇ × B the current density (having normalized μ0 ¼ 1),
p the pressure, and Γ ¼ 5=3 is the adiabatic index. The
symbol ⊥ indicates the vector perpendicular projection to
themagnetic field; i.e., v⊥ ¼ B × ðv × BÞ=B2. The Faraday-
Ohm law has been approximated within the limit of nearly
isobaric surfaces and small plasma compressibility.
In choosing the equation for the pressure evolution, it has

been implicitly assumed that Ti significantly exceeds Te so
that p0 ≈ p0i. Moreover, by assuming that Te is propor-
tional to ρ at equilibrium and that the perturbations of the
mass density and the electron temperature are dominated
mainly by convection (i.e., the v · ∇ term), we obtain that
the perturbed pressure is given by the ion contribution.
The rotational transform profile (denoted with μ

with q ¼ 1=μ) is piecewise continuous [25], constant for
0 < r < r0 and r1 < r < rp (rp ¼ ðr1 þ aÞ=2), with val-
ues μax and μ1, respectively [μax > μ1 ¼ 1=ðm=n − δqÞ],
while μ ¼ μ1ðr1=rÞ2 for r0 < r < r1. The separatrix is
modeled by imposing for rp < r < a a narrow region of
high magnetic shear:

ðmþ 1Þμ − n ¼ S½1 − ðr=aÞλ�; λ → ∞; ð4Þ

where S is a constant such that μðrpÞ ¼ μðr1Þ (note that
for λ → ∞, this high shear region becomes infinitesimally
narrow so that we regard the region r1 < r < a as shear-
free). A vacuum region between plasma and the ideally
conducting wall extends from r ¼ a to r ¼ b (the wall
thickness is irrelevant). We refer to the regions 0 < r < r1
and a < r < b as the outer regions, while the region r1 <
r < a is the pedestal region (the q profile and the relevant
radial positions are shown in Fig. 1).
An equilibrium helical MHD flow [vr0 ¼ 0, vϑ0 ¼ ωϑðrÞ

and vφ0 ¼ ΩðrÞ [28] ] is assumed. We stress that ωϑ is of

E × B origin. Such a flow is sufficiently weak so that the
centrifugal corrections to equilibrium pressure and mass
density profiles [29] are negligible within the approxima-
tions employed in this work [15]. Equilibrium flow and
mass density (pressure) gradients are localized within the
pedestal region. Equilibrium quantities are denoted by the
subscript 0, while perturbed ones, denoted by a tilde, have a
time dependence of the type eγt (γ complex).
Eigenmode equations.—The infernal model [30,31]

assumes the presence of three poloidal Fourier harmonics,
one dominant (m) coupled to two neighboring sidebands
(m� 1). Hence, we write the perturbed velocity as
ṽ ¼ ṽmðrÞei½mϑ−nφ� þP

m0¼�1ṽmþm0 ðrÞei½ðmþm0Þϑ−nφ�, with
ṽm�1 ∼ εṽm (since n is fixed, we omit specifying the
toroidal mode number in writing the Fourier components).
Mode coupling, induced by the metric oscillation of the
Jacobian, is favored in the presence of large pressure
gradients and field line bending weakening (i.e., weak
shear).
In the inner and outer regions, because of field line

bending dominating over inertia and vanishing pressure
gradients, different poloidal Fourier harmonics behave
independently according to [25,32] (here, l ¼ m;m� 1
and 0 ≡ d=dr)

½r3ðlμ − nÞ2ξl0�0 − rðl2 − 1Þðlμ − nÞ2ξl ¼ 0; ð5Þ

having introduced the Lagrangian-like radial fluid displace-
ment ξl ¼ ṽrl=γl with γl ¼ γ þ ilωϑ − inΩ [33].
The main difficulty is to derive the eigenmode equation

for the mth harmonic, which contains the inertial contri-
butions due to E × B and diamagnetic flows. In the pedestal
region we impose the ordering δq=q ∼ ε and γ=m∼
Ω ∼ ωϑ ∼ ω� ∼ εωA, where ω�ðrÞ ¼ v�0 · ∇ϑ and ωA ¼
Bax=ðR0

ffiffiffiffiffi
ρ0

p Þ (the Alfvén frequency with Bax the magnetic
field equilibrium value on the axis). To leading order the
ð1=R2Þ∇φ projection of Eq. (1) yields B̃φ ¼ 0. From the
contravariant radial, poloidal, and toroidal projections of
Eq. (2) we obtain, respectively, ð ffiffiffi

g
p

B̃rÞl ¼ irðlμ − nÞξl,
ð1=rÞðrṽrmÞ0 þ imṽϑm − inṽφm ¼ 0, and ṽφm þΩ0ξm ¼ 0.
It follows that ð ffiffiffi

g
p

B̃ϑÞm ¼ −ð1=imÞð ffiffiffi
g

p
B̃rÞm0 and

FIG. 1. Example of a model safety factor profile employed in
our analysis. Note the ðmþ 1Þ=n resonance at the plasma
boundary mimicking the separatrix.
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B̃i
m ∼ B̃i

m�1. We point out that in the case of large radial
gradients and poloidal wave numbers, the relations above
still hold. The perturbed pressure is written in terms of ξ
according to p̃l ¼ −p0

0ξl þ δpl, where δp is the non-
convective contribution. In the limit Ti ≈ const with δp
small, we have ṽ� ≃ ð∇φ=eBφ

0 Þ × ∇ðp̃=n0Þ (n0 is the
equilibrium numerical density). We take large radial
gradients localized within the narrow pedestal region:

rd ln f=dr ≫ 1; f ¼ ξl; ρ0; p0;Ω;ωϑ:

In addition, we assume m ≫ 1 (and so n ¼ m=q
with q ∼ 1).
The equation for the generic radial displacement ξl is

obtained by applying the operator D ¼ ffiffiffi
g

p ∇φ · ∇ × 1=Bφ
0

on the perturbed momentum equation [34,35], and then
selecting the lth Fourier component. Field line bending
dominates over inertia in the sideband equations (modes
with poloidal mode number m� 1), so that additional flow
effects play no role in their corresponding eigenmode
equations which read [25]

ðr2�mξm�1Þ0 ¼ r1�2mL� þ 1�m
2

αr1�mξm; ð6Þ

where L� are constants of integration which are determined
later. The equation for ξm is given by the mth harmonic of
the action of D on Eq. (1). At leading order a rather lengthy
but straightforward algebra gives (the cylindrical limit
proves to be sufficient)

fD½ gρðdtvþ v� · ∇v⊥Þ�gm ¼ i
mR0

½r2ðKξ0mÞ0 −m2Kξm�;

with K ¼ ðγD þ imωϑÞ½γD þ imðω� þ ωϑÞ�=ω2
A and γD ¼

γ − inΩ having normalized Bax ¼ 1. Let us call ZðξmÞ the
rhs of the equation above. In the incompressible limit ∇ ·
ṽi → 0 and Γ → ∞ [35–38], assuming ∇ · vi0 negligible
and writing δpm�1 from the perturbedB=jB0j2 projection of
Eq. (1), we eventually get ½Dð∇δpÞ�m ¼ 2q2ZðξmÞ, which
embodies the Glasser-Greene-Johnson inertia enhancement
factor [39]. In deriving the equation above, we assumed
ωϑ þ ω� ≈ ωI , where ωI has weak radial gradients [40].
Finally, with ðδq=qÞaðd=drÞ ∼ 1 and −2R0p0

0q
2 ¼ α ∼ 1,

by taking into account only the leading order of B̃φm and
the incompressible part of p̃m, the action of D on the rhs of
Eq. (1) yields a term analogous to the lhs of Eq. (16) in
Ref. [30], computed in the abovementioned limit of steep
radial gradients and large m. Thus collating these results
together and eliminating the sideband displacements ξm�1

by means of Eq. (6), the eigenmode equation for the main
harmonic ξm in the pedestal region finally reads [25,30]

r2ðQξ0mÞ0 −m2Qξm þ α

2

X r�mL�
1�m

¼ 0; ð7Þ

where Q ¼ ð1þ 2q2ÞK=n2 þ ðδq=qÞ2. Equations (5)–(7)
form the basis for our analysis.
Dispersion relation.—We assume that the profiles of

equilibriummass density, pressure, and toroidal rotation are
steplike [25], i.e., fðrÞ=fðr1Þ∼θðrp−rÞ, with f¼p0;ρ0;Ω,
where θðxÞ is the Heaviside step function of argument x.
Without loss of generality [with ω� ∝ p0

0 ∼ δðr − rpÞ], we
choose ωϑ of the form [41]

ωϑðrÞ ¼ ωErpδðr − rpÞΔþ ωI;

with Δ ¼ ða − r1Þ=rp and ωE constant where δ is the Dirac
delta. Note that

R
a
r1
ωϑdr=

R
a
r1
dr ¼ ωE þ ωI , where ωI has a

weak radial dependence.
Writing symbolically Eq. (7) as ðQξ0mÞ0 þ fðrÞ ¼ 0, we

define FðrÞ ¼ R
r
r1
fðr̂Þdr̂, so that Qξ0m þ FðrÞ ¼ C, where

C is a constant of integration. The function F is bounded,
thus dividing the previous result by Q (supposed non-
vanishing) and then integrating across rp shows that ξm is
continuous at rp. The solutions of Eq. (5) in the region
0 < r < r1 and a < r < b for the dominant mode ξm
provide the appropriate boundary conditions at r1 and a;
namely, ξmðr1Þ ¼ ξmðaÞ ¼ 0 [25,42]. Thus using the pro-
files for mass density, pressure, toroidal, and poloidal MHD
flows and solving Eq. (7) on the left and on the right of rp
with the boundary conditions at r1 and a given above, we
obtain to leading order

ξm ∝
emr=rp − emð2rf=rp−r=rpÞ

em − emð2rf=rp−1Þ ;

with rf ¼ r1 for r < rp and rf ¼ a for r > rp, where the
slowly varying terms in r have been approximated by
setting r ≈ rp. Note that ξm is symmetric about rp.
To determine the last term on the lhs of Eq. (7), first

Eq. (6) is evaluated at r1 and a providing, respectively,
ξm�1ðr1Þ and ξm�1ðaÞ (both functions of L�). Then,
plugging these expressions into Eq. (6) and integrating
from r1 to a gives ðr�m

p L�=1�mÞ¼ξmðrpÞðβ1q2=εpÞΛð�Þ,
where β1 ¼ 2p0ðr1Þ, εp ¼ rp=R0, and Λð�Þ are given by
Eq. (16) in Ref. [25] whose sideband dependence is
embedded in the coefficients C� ≡ ½rdðln ξm�1Þ=dr�r1
and B� ≡ ½rdðln ξm�1Þ=dr�a.
The quantities C� are obtained by solving Eq. (5) in the

region0 < r < r1 and thus imposing smoothmatching of the
sideband eigenfunctions ξm�1 across r1 [25,31]. The constant
B− is evaluated similarly [the vacuum perturbation obeys
Eq. (5) as well], with the replacement r1 → a. These have
been computed inRef. [25], and for largem and small δq they
read Cþ ≈ 3mþ 2, C− ≈m=6 − 1=4, and B− ≈ 2–3m [in
the latter expression we approximated ða=bÞ2m−2 → 0].
Finally, Bþ is obtained by solving Eq. (5) [which is

equivalent to Eq. (6) for μ constant and α → 0] for rp <
r < a with μ given by Eq. (4). The solution for ξmþ1 can be
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expressed exactly in terms of the hypergeometric functions
[26], so that forcing ξmþ1 to be finite at its own resonant
surface and taking the limit λ → ∞ yields

ξmþ1 ∝ ðr=aÞ−m−2 þ ð1þ 2=mÞðr=aÞm;

from which Bþ ¼ 0. We point out that with an ideally
conducting metallic wall directly interfaced with the
plasma (i.e., B� → ∞) the driving term ΛðþÞ þ Λð−Þ is
negative, implying stability, reflecting the necessary con-
dition of good plasma-wall detachment, as observed in
various machines [4,5,11]. Thus, in the limit of large m
and sufficiently far wall, we may approximate ΛðþÞ¼
fmðrp=aÞ2m=½1þðr1=aÞ2m=2�g and Λð−Þ ¼ f2mða=rpÞ2m=
½1þ 3ða=r1Þ2m�g. The m upper boundary for which the
approximations hold can be estimated by requiring
ð1=mÞrd ln ξmr=drjrp ≳ 1 (for the parameters which will
be employed in the numerical evaluation of the growth rate,
we would take m ∼ 40–50).
Therefore, by taking γD ¼ γ − inΩ1 with Ω1 ¼ Ωðr1Þ,

according to Refs. [25,29] integration of Eq. (7) across rp
yields the dispersion relation, which in the limit q ≫ 1
reads

γ

nωA
≈ i

�
Ω1

ωA
− q

�
ωI

ωA
þm2ωEΔ

2DωA

��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ1qÞ2Λ
4Dε2p

−
δq2

q4
−
�
m2qωEΔ
2DωA

�
2

s
; ð8Þ

where Λ ¼ ΛðþÞ þ Λð−Þ and D ¼ m coth½mð1 − r1=rpÞ� ¼
rd ln ξm=drjrp−δ, with δ → 0. Hereafter it is understood that
ωA is the value of the Alfvén frequency on the magnetic
axis.
By setting ωE ¼ ωI ¼ 0, we recover the dispersion

relation derived in Ref. [25] (note that the only effect of
toroidal rotation is to Doppler shift the eigenmode fre-
quency in agreement with the requirement that EHOs exist
with either sign of the toroidal rotation frequency [43]).
Indeed the first two terms under the sign of the square root
are the linear growth rate of the purely MHD perturbation.
The imbalance in the inertial contribution of the Doppler
correction to γ due to the combination of poloidal MHD
and diamagnetic flows produces the last term in the square
root of Eq. (8). This term, although small for small m
values, increases its amplitude with the poloidal (or
equivalently the toroidal) mode number. Hence, the inter-
play of this additional contribution with the pressure (∝β)
and field line bending weakening (∝δq) driving terms,
allows the suppression of short wavelength perturbations
favoring the growth of low-n modes. This is shown in
Fig. 2, where the real and imaginary parts of γ are computed

by means of Eq. (8) with reactor relevant parameters. Note
that since ωE can be different for different machines or
regimes, a different number of harmonics can be excited
[5,8]. The E × B shearing rate estimated as ωE=Δ ∼ ωA
(order of megahertz) is in line with the results of Ref. [44].
Finally, we point out that the ωE stabilization mechanism is
independent of mode coupling. Hence, it may be expected
that if a larger number of coupled harmonics is allowed,
with the growth rate driving contribution increasing linearly
with n [7,20], such a stabilization still occurs. If additional
Doppler contributions enter the diamagnetic flow, stabili-
zation is nevertheless achieved with the ωE term in Eq. (8)
being dominant for short wavelength modes.
Conclusions.—In this Letter, the excitation mechanism

for low-n EHOs has been identified analytically. Besides
the edge local flattening of the safety factor and local sharp
pressure gradients [25], the short wavelength (viz. high-m)
mode suppression is achieved by the combined effect of
poloidal MHD and ion diamagnetic flow with the constraint
of a Doppler-like effect of the ion flow. This approximation
has been employed primarily to keep the algebra manage-
able. Avacuum gap between plasma and the metallic wall is
necessary, though its effect is weakened for sufficiently
large m and reduced by the presence of the separatrix.
Although highly simplified profiles for pressure, mass
density, and equilibrium rotation have been employed,
all features measured experimentally and modeled numeri-
cally have been retrieved within the exfernal framework.
These are (i) the strong dependence of the EHO appearance
on the E × B poloidal rotation letting low-nmodes emerge,
(ii) the independence of the growth rate upon the sign of the
toroidal flow [17,19,43], (iii) the rotation frequency spacing
of the toroidal harmonics close to the plasma toroidal
rotation (if sufficiently large) at the pedestal top [10,13],
and (iv) the pedestal localized structure of the radial
eigenfunction. Further work is required to extend the
analysis of such phenomena with more realistic profiles
in a beyond-MHD framework.
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FIG. 2. Real (a) and imaginary (b) parts of γ evaluated from
Eq. (8) with q ≈ 5, ε ¼ 1=3, r1=a ¼ 0.95, Ω1=ωA ¼ 5 × 10−2,
ωI=ωA ¼ 3 × 10−3, β1 ¼ 0.3%, and δq ¼ 0.1.
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