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Droplets can self-propel when immersed in another liquid in which a concentration gradient is present.
Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified
ethanol-water mixture: At first, the droplet sinks slowly due to gravity, but then, before having reached its
density matched position, jumps up suddenly. More remarkably, the droplet bounces repeatedly with an
ever increasing jumping distance, until all of a sudden it stops after about 30 min. We identify the
Marangoni stress at the droplet-liquid interface as responsible for the jumping: its strength grows
exponentially because it pulls down ethanol-rich liquid, which in turn increases its strength even more. The
jumping process can repeat because gravity restores the system. Finally, the sudden death of the jumping
droplet is also explained. Our findings have demonstrated a type of prominent droplet bouncing inside a
continuous medium with no wall or sharp interface.
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Swimming droplets [1] are droplets that self-propel
when immersed in another liquid. They are of great
importance for their relevance to (bio)chemical reactors
[2,3]. They also serve as a model system for studying
collective behavior in biological populations [4–8]. One
of the fundamental mechanisms leading to their self-
propulsion is the so-called Marangoni effect [9,10]. It is
induced by the nonuniform interfacial tension of the droplet
that can be generated by chemical reactions [11–15],
solubilization [1,16–20], phase separation [21–25], or by
a global temperature or solute gradient [26]. The present
work focuses on the last type, which is commonly
encountered in nature [27].
A major focus of earlier studies was on the dynamics of

swimming droplets [20]. The motion of a droplet in a global
solute gradient is believed to be governed by the competi-
tion of droplet speed and the diffusivity of the background
concentration field, which is characterized by the Péclet
number Pe, which is the ratio between the diffusive and the
inertial time scale. Previous works identified two regimes of
droplet motion based on the framework of diffusiophoresis
[10,28,29]: For small Pe, the concentration gradient is not
affected by fluid motion and thus the droplet movement
can persist. In contrast, for large Pe, the sharp concentration
gradient at the periphery of the droplet is always smoothed
out, and thus the motion of the droplet is slowed down [30].
However, in this Letter, we conduct experiments and
simulations to demonstrate that when combined with

gravity, the Marangoni stress on an oil droplet in a stratified
ethanol-water mixture can oscillate between large and small
Pe, leading to a continuous bouncing of the droplet. And,
more surprisingly, the amplitude of the droplet oscillatory
motion even increases before it suddenly stops. Contrary to
the commonly held concept that droplet bouncing requires a
wall [31–33] or a sharp interface [34]; here the droplet
bounces in the bulk of a continuous medium, which only
requires a large enough concentration gradient.
In the experiment, 1.8 mL ethanol is carefully injected

into a cuvette (10 × 10 × 45 mm) containing 1.8 mL water
to produce a vertical density stratification. Then a 0.5 μL
(R ¼ 0.44 mm) oil drop of trans-Anethole is released in it.
The motion of the droplet is visualized with a Nikon
camera aiming from the side. A series of typical snapshots
of the droplet motion within the first two jumping cycles
are shown in Fig. 1(a). The height of the droplet center hðtÞ
is plotted over the first two cycles in Fig. 1(c) and over the
entire jumping lifetime in Fig. 1(d), with its final value
being taken as 0. The ethanol fraction we as a function of
height h is measured by laser deflection and shown in
Fig. 1(b). The error bar of we is within � 2wt% (see
Supplemental Material [35] for more details.)
The oil droplet has a density of 988 kg=m3 at 25 °C,

which is slightly lighter than water (997 kg=m3) but much
denser than ethanol (785 kg=m3), so it first sinks slowly
due to gravity [Fig. 1(a), ①–③]. At 59 s (④), the droplet
reaches the height with surrounding mixture density
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ρmix ¼ 958 kg=m3 (we ¼ 26.6wt%), which is still lighter
than the oil droplet. Surprisingly, instead of sinking
continuously, the drop suddenly changes direction and
jumps up by ∼4 mm (④–⑥), which is more than 4 times
its diameter. It reaches the highest position within
0.9 s (⑥), then sinks again for another 49 s (⑥–⑨). Before
reaching the density matched position (h ¼ 0 mm,
ρmix ¼ 978 kg=m3) again, the drop suddenly jumps up
from 108 s (⑨, we ¼ 24.8wt% and ρmix ¼ 961 kg=m3) till
108.9 s (⑪). It continuously sinks and jumps for another
24 times, then all of a sudden it falls dead after 30 min, as
shown in Fig. 1(d). It is noteworthy that by each jump, the
drop sinks to a lower position but still returns to almost the
same height (h ≈ 6 mm, we ≈ 60wt%); thus the jumping
distance increases progressively from 4 to 5.5 mm. We also
note that during the sinking of the droplet, there are tiny
oscillations as shown in the inset of Fig. 1(c). These
oscillations display the Brunt-Väisälä frequency, which
describes the vertical oscillation of a fluid parcel in a
vertically stratified fluid around its stable position [45–48].
Indeed, the calculated Brunt-Väisälä frequency in our case
is 2.08 Hz, which fits well with the observed value 2.15 Hz.
Oil has smaller surface tension with ethanol than with

water [Fig. 1(e)], so the ethanol-rich liquid above makes the
interfacial tension at the apex of the droplet smaller than
that of its bottom. This interfacial tension difference
generates a Marangoni flow pointing downwards, which
then tends to lift the droplet [1]. The stronger the

Marangoni flow, the faster the droplet will move to the
opposite direction. The induced Marangoni flow is essen-
tial to the jumping of the droplet, and we confirm this by
adding surfactant to the bulk liquid (0.7 mM sodium
dodecyl sulfate, SDS, in both water and ethanol) to
suppress the Marangoni stress. With this addition, the
droplet only sinks without jumping. This result suggests
that during the sinking motion of the droplet, the
Marangoni flow is very small.
Apart from the weak Marangoni flow on the droplet

induced by the ethanol gradient, it is also settling through a
density gradient. As is well known [49–51], a settling
particle in a vertically stratified liquid brings lighter liquid
down with it, the so called “drift” or “entrainment.”
Buoyancy of the entrained liquid acts as an extra drag
on the droplet, making it sink monotonically towards the
density matched position, i.e., no oscillation. Some of the
entrained liquid will also go up, forming the “buoyancy jet”
[45–48]. The same concept can be adapted to the droplet in
our case, except that an extra Marangoni flow, pointing
downwards, is superimposed to the flow field of the settling
motion. The resulting flow field is then determined by the
relative strength of these two effects.
We then performPIVmeasurements and shadowgraphy to

reveal the flow dynamics during the sinking-jumping proc-
ess, as shown in the right and left panels of Figs. 2(a)–2(e),
respectively. Shadowgraph provides qualitative information
on density variations which modulate light intensity. In our

FIG. 1. Continuous jumps and the eventual sudden death of the oil drop. (a) Successive snapshots of the 0.5 μL oil drop for the first
two cycles. The scale bar is 1 mm. (b) Ethanol weight fraction we as a function of height h is measured by laser deflection. Error of we
measurement is�2wt%. (c) The oil drop’s center position h versus time t for the first 2 cycles, with the final height being taken as 0. The
inset shows the vertical oscillation, with frequency 2.15 Hz, during the sinking of the drop. (d) The oil drop’s center position h for all the
cycles of the jumping process. After each jump, the drop sinks to a lower position, but at each jump, it still reaches almost the same
height h ≈ 6 mm, thus even increasing the jumping amplitude. This particular drop jumps 26 times within 30 min. (e) The interfacial
tension between oil and ethanol-water mixture. Error bars are the standard deviation over 5 measurements.
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case, the ethanol gradient in the surrounding liquid is
indicated by light intensity gradient in the background, with
brighter regions representing higher ethanol concentration.
For the same reason, the drifted layer around the drop in
Figs. 2(a)–2(d) is found to have almost uniform light
intensity, meaning almost uniform ethanol concentration.
The resulting Marangoni flow is very weak VM ≈
0.02 mm=s (in droplet reference frame, smaller than the
sinking velocity Vsink ≈ 0.04 mm=s), so that the droplet
could sink. Additional insight in the phenomenon can be
obtained by numerical simulation. Performed in a linear
gradient, the numerical results are found to qualitatively fit
the experimental results [Figs. 2(f)–2(j); see Supplemental
Material [35] for more details and results].
From both experiment and numerics we conclude that

the buoyancy jet is quite strong shortly after the drop is
released [Figs. 2(a), 2(f)], then it decreases, so that the
Marangoni stress becomes relatively stronger [Figs. 2(b),
2(g)], forming a downwards replenishing flow above the
apex of the drop. This local recirculation close to the drop
only decreases the Marangoni strength slowly (Pe ∼ 10, a
moderate advection). Sinking deeper, the buoyancy jet
becomes so weak until finally it vanishes, and the
Marangoni-induced replenishing flow dominates. At this
moment [Figs. 2(c), 2(h)], the buoyanct flow stops and the
liquid velocity above the drop is entirely downward.
Different from the local recirculation, this downward flow

brings ethanol-richer liquid to the apex of the drop,
decreases the local surface tension, thus increasing the
Marangoni flow (especially in the upper half), which in
turn brings more ethanol, forming a positive feedback
[Figs. 2(d)–2(e), 2(i)–2(j)]. The Marangoni flow conse-
quently strongly increases until it is large enough to pull the
droplet up.
The Marangoni velocity VM at the side of the drop and

velocity one radius above the drop VR are measured
[at positions as indicated in Fig. 2(c)] and plotted in
Fig. 3(a). The velocity of the drop Vdrop is also plotted
as a reference. Indeed, VM slowly decreases while VR is
positive (pointing upwards), and VM starts to increase
when VR changes direction, entering the positive feedback
regime. The Marangoni flow is proportional to the
surface tension difference on the drop, VM∝Δσ¼
2Rð∂σ=∂weÞð∂we=∂yÞ≈∂σ=∂weðwe;B−we;AÞ, where we;A

and we;B are the ethanol fractions of the surrounding
mixture at the apex and bottom of the droplet, respectively
[Fig. 2(d)]. The drop jumps from regions of ethanol fraction
less than 30 wt %, below which, according to Fig. 1(e), the
interfacial tension decreases linearly, so that ∂σ=∂we is a
negative constant, thus VM ∝ ðwe;A − we;BÞ. Consider the
initial accelerating period where ethanol does not reach
the drop’s bottom yet, so only we;A changes. Then
dVM=dt ∝ dwe;A=dt. In the region where the droplet
jumps, the concentration of ethanol above the drop can

FIG. 2. Shadowgraph (left) and PIV (right) measurements of a 0.5 μL oil drop [top row, (a)–(e)] and the numerical simulations
[bottom row, (f)–(j)] during the drop’s first jump. Light intensity gradient in the background of the shadowgraph indicates the ethanol
concentration in the surrounding liquid. Velocities are shown in the laboratory frame. Scale bar is 1 mm, and color bars denote velocity
magnitude as well as ethanol fraction. (a),(f) Shortly after release, the buoyant liquid in the droplet’s wake generates a relatively strong
jet—the buoyancy jet. A drifted uniform layer of ethanol-rich liquid leads to a very weak Marangoni flow. (b),(g) The Marangoni flow
becomes relatively strong; thus the flow directly above the drop is pointing downwards; we refer to it as “replenishing flow.” Frames (c),
(h) are close to the time when the buoyancy jet vanishes. Ethanol-rich liquid above the drop is being brought downwards to its apex, and
VM starts to increase. (d),(i) This downward flow brings more ethanol to the apex, further increasing VM in the upper half of the droplet,
which then will move as a “puller” [1]. (e),(j) The Marangoni flow has increased by 2 orders of magnitude in less than 1 s, pulling the
drop upwards.
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be approximated as linear,we ∝ y, so thatdwe;A=dt ∝ dy=dt.
The flow field at this moment is induced by the dominating
Marangoni flow, so dy=dt ∝ VM, thus dVM=dt ∝ VM. This
gives rise to an exponential growth of the Marangoni flow:

VM ∼ et=τ: ð1Þ

A zoomed in logarithmic plot of VM is shown in
Fig. 3(b). Indeed, VM is confirmed to increase exponen-
tially shortly after it starts to increase. The calculated time
constant τ of the growth is 0.073 s, fitting well with the
measured value 0.084 s (see Supplemental Material [35] for
coefficients). Note that the Marangoni flow remarkably
increases by more than 2 orders of magnitude within 1 s,
accounting for the sudden shooting up.
VM keeps increasing until the drop reaches a higher

position where the ethanol fraction we > 40wt% because
∂σ=∂we decreases sharply in this region, until it almost
vanishes at we ≈ 60wt% [Fig. 1(e)], corresponding to
h ≈ 6 mm, which forms the “ceiling” for the jumping
because the Marangoni driving force ceases. VM also
decreases because when VM reaches its highest value of
∼5 mm=s; the drop’s Péclet number is then on the order of
1000. This strong advection tends to homogenize the
surrounding liquid [30], leading to an additional decrease
of ∂we=∂y. This explains the formation of the almost
uniform drifted liquid layer [Fig. 2(a)]. For a newly
released drop, Marangoni flow during the injection process
is responsible for the formation of the uniform layer. Note
that when the droplet is sinking, the drifted layer around the
drop also decreases in its ethanol concentration (Fig. 2)
because of advection and diffusion. This means that the
interfacial tension of the droplet is building up, and the
deeper it sinks, the more interfacial energy it builds up, so
that the droplet has more energy to jump a larger distance.
This accumulated interfacial energy is later transformed to
momentum by Marangoni flow, in a kind of “avalanche”
process.

The direction of the flow above the droplet, which is
determined by the relative strength between buoyancy jet
and Marangoni flow, determines whether it jumps or not.
Here the buoyancy jet velocity Vbuo is the component of VR
induced by a sinking passive droplet, i.e., a droplet without
Marangoni forces acting on it. To gain more insight into the
buoyancy jet here, PIV measurements are performed after
the addition of 0.7 mM SDS to suppress the Marangoni
flow. It is found that both the sinking velocity Vdrop and the
buoyancy jet velocity Vbuo (measured 1.5 radius above the
droplet) decrease exponentially, as shown in Fig. 4(a), with
the former one similar to that of a sinking particle [52]. As
VM decreases at a much slower rate than Vbuo [Fig. 2(a)], at
some point the Marangoni flow will dominate, namely,
when Vdrop is small enough. However, the Marangoni flow
is getting weaker by each jump (see Supplemental Material
[35]), most likely due to mixing of the surrounding liquid
[34], which is enhanced by the jumping itself. Therefore the
Marangoni-flow-induced lifting force gets smaller at each
jump, so that the sinking velocity increases, as shown in
Fig. 4(b), where the sinking velocity at h ¼ 2.5 mm is
plotted against the subsequent number of sinks.
Consequently, Vbuo increases, and therefore it gets pro-
gressively harder for the Marangoni flow to overcome
buoyancy. Figure 4(c) shows a sketch of the relative
strength between Vbuo and VM;R (Marangoni flow induced
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flow 1.5 radius above the drop). For the first sink, Vbuo
decreases quite fast, and the flow reversal happens when
VM;R becomes larger than Vbuo, so that the droplet jumps.
As the number of sinking events increases, Vbuo increases
and VM;R decreases. Therefore the droplet can sink longer
(and also deeper) before it jumps. Finally at some point,
VM;R is so weak that Vbuo is always dominant: The jumping
stops and the droplet falls “dead.” We confirm this picture
by measuring VR ¼ Vbuo − VM;R for a normal sinking
droplet without surfactant [Fig. 4(d)]. As expected, VR
decreases from a higher value and changes direction at later
times as increasing sinking number, until finally no flow
reversal is observed, and the droplet falls dead. This
multiple bouncing and sudden death behavior is very
general because it can be observed for a wide range of
droplet sizes, from 0.1 to 5 μL.
In conclusion, an oil droplet of trans-Anethole released

in a vertically stratified ethanol-water mixture is found to
bounce repeatedly with ever increasing jumping distance,
until finally it falls dead all of a sudden. Marangoni flow
and gravity are responsible for this phenomenon: Interfacial
energy builds up when the droplet sinks, and a flow reversal
above the sinking droplet triggers an exponential growth of
the Marangoni flow, leading to the sudden jump. The
consequent strong advection decreases the Marangoni
stress, enabling the droplet to sink again and then continue
the bouncing cycle. The ever decreasing Marangoni flow
by each jump is responsible for the droplet’s increasing
jumping height as well as its sudden death.
The present system can be easily generalized to other

liquids, as long as one has a vertically stratified liquid
which can generate strong enough Marangoni stress on the
droplet. This is supported by our observation of a silicon oil
drop in the same stratified fluid that exhibits a similar
bouncing behavior. Currently, we are investigating how the
other parameters influence this behavior.
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