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We present variational and Hamiltonian formulations of incompressible fluid dynamics with a free
surface and nonvanishing odd viscosity. We show that within the variational principle the odd viscosity
contribution corresponds to geometric boundary terms. These boundary terms modify Zakharov’s Poisson
brackets and lead to a new type of boundary dynamics. The modified boundary conditions have a natural
geometric interpretation describing an additional pressure at the free surface proportional to the angular
velocity of the surface itself. These boundary conditions are believed to be universal since the proposed
hydrodynamic action is fully determined by the symmetries of the system.

DOI: 10.1103/PhysRevLett.122.154501

Introduction.—The variational principle in hydrodynam-
ics has a long history. We refer to Refs. [1,2] and references
therein for an introduction to the topic. In particular, Luke’s
variational principle (LVP) is a variational principle of an
inviscid and incompressible fluid with a free surface [3,4].
LVP provides both bulk hydrodynamic equations for an
irrotational flow as well as kinematic and dynamic boun-
dary conditions at the free surface boundary [4]. Such a
principle was later extended to include surface tension and
bulk vorticity (for a recent summary see Ref. [5]). In this
Letter, we present a further extension of LVP which
accounts for the presence of odd viscosity in isotropic
two-dimensional fluids with broken parity.
In three dimensions, parity odd terms in the viscosity

tensor have been known for a long time in the context of
plasma in a magnetic field [6] and in hydrodynamic
theories of superfluid He-3A [7], where the fluid anisotropy
plays a major role. In two dimensions, however, the odd
viscosity is compatible with isotropy of the fluid [8]. The
odd viscosity is the parity violating nondissipative part of
the stress-strain rate response of a two-dimensional fluid.
The recent interest in odd viscosity is motivated by the
seminal paper by Avron, Seiler, and Zograf [9] where it was
shown that, in general, quantum Hall states have non-
vanishing odd viscosity. The role of odd viscosity (a.k.a.
Hall viscosity) in the context of quantum Hall effect has
been an active area of research [10–33], but is out of the
scope of this work.
In Ref. [8], Avron has initiated the search for odd

viscosity effects in classical 2D hydrodynamics. These
effects are subtle in the case when the classical two-
dimensional fluid is incompressible. Recent works have
outlined some of observable consequences of the odd

viscosity for incompressible flows [34–39]. In particular,
in Ref. [39] the equations governing the Hamiltonian
dynamics of surface waves were derived in the case where
bulk vorticity is absent.
Let us start by summarizing the main equations of an

incompressible fluid dynamics with odd viscosity. In the
following we assume that the fluid density is constant and
take it as unity. We also neglect all thermal effects. Then,
the hydrodynamic equations are the incompressibility
condition and the Euler equation

∇ · v ¼ 0; ð1Þ

∂tvþ ðv · ∇Þv ¼ ∇ ⊗ T: ð2Þ

Here, vðx; tÞ is a two-component velocity vector field and T
is the stress tensor of the fluid. In components the rhs of
the Euler equation, Eq. (2), reads ð∇ ⊗ TÞi ¼ ∇jTij. In flat
space and in Cartesian coordinates, the stress tensor
assumes the following form:

Tij ¼ −δijpþ νoð∂iv�j þ ∂�
i vjÞ: ð3Þ

The first term of Eq. (3) is standard and describes the
contribution to the stress from isotropic fluid pressure p.
The second term, however, is quite different from the
conventional dissipative shear viscosity νeð∂ivj þ ∂jviÞ
(here νe is the shear or “even” viscosity coefficient). The
last term of Eq. (3), instead, is the contribution of the odd
viscosity, with νo being the kinematic odd viscosity
coefficient. Differently from νe, we can assign either
sign to the odd viscosity νo, since it multiplies a dissipa-
tionless term. In Eq. (3) and in the following we use the
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“star operation” so that the vector a� is the vector a rotated
90° clockwise or in components a�i ≡ ϵijaj. This operation
explicitly breaks parity and a nonvanishing νo is only
allowed in parity breaking fluids.
Euler Eq. (2) with the stress tensor Eq. (3) takes the form

of the Navier-Stokes equation with odd viscosity term
replacing the conventional viscosity term

∂tvþ ðv · ∇Þv ¼ −∇pþ νoΔv�: ð4Þ

Bulk hydrodynamic Eqs. (1) and (4) must be supple-
mented by boundary conditions. For a free surface we
should use one kinematic and two dynamic boundary
conditions:

ð∂tΓÞn ¼ vnjΓ; ð5Þ

TijnjjΓ ¼ 0; ð6Þ

where n is the unit vector normal to the free 1D surface
Γ ¼ ∂M of the 2D fluid domain M. The kinematic
boundary condition (KBC), Eq. (5), states that the velocity
of the free surface in its normal direction is equal to the
normal component of the velocity flow taken at the surface.
The set of two dynamical boundary conditions (DBCs)
given by Eq. (6) imposes that both components of stress
force acting on the segment of the surface vanish. These
conditions are appropriate for interfaces with vacuum or air,
assuming that the latter cannot maintain nonvanishing
forces on the surface of the fluid.
For a rather general class of fluid flows it is not possible

to satisfy both DBCs [Eq. (6)] with the stress tensor
[Eq. (3)] by smooth velocity configurations. A singular
boundary layer is formed. One can see it, for example, in a
linear approximation [39] and the phenomenon is very
similar to a formation of a boundary layer for fluid with
infinitesimal shear viscosity [40]. A nonvanishing shear
viscosity νe or finite compressibility, characterized by a
finite sound velocity cs, results in a finite thickness of the
boundary layer proportional to

ffiffiffiffiffi
νe

p
[39] or to 1=cs [41],

respectively. If one assumes that at least for finite times the
boundary layer is stable and very thin, the motion of the
fluid surface should be defined by effective boundary
conditions imposed on the interior part of the fluid.
Colloquially speaking, the latter boundary conditions
can be obtained by “integrating out” the boundary layer.
As a result, instead of two independent DBCs [Eq. (6)],
one should consider a single effective normal dynamic
boundary condition

p̃jΓ ≡ p − νoωjΓ ¼ 2νo∂svn; ð7Þ

where ∂svn ¼ −n�i ∂ivn is the derivative of normal velocity
along the boundary and we introduced a notation p̃—
pressure modified by vorticity ω ¼ ∂iv�i .

While the precise way in which the tangent stress part of
DBCs [Eq. (6)] is satisfied depends on the exact structure of
the boundary layer, here we show that the effective normal
stress boundary condition is universal and is given by
Eq. (7). We obtain this universal statement by taking the
variational principle for an ideal incompressible fluid and
modifying it by adding a boundary term, which is lowest
order in gradient expansion, breaks parity but preserves
other symmetries of the system. We show that this
boundary term produces Eq. (7) justifying the expectation
of universality.
Let us start by rewriting Eq. (4) as

∂tvþ ðv · ∇Þv ¼ −∇p̃ ð8Þ

using the incompressibility of the fluid, Eq. (1).
Equation (8) is indistinguishable from the conventional
Euler equation [42]. Therefore, we can start from Luke’s
variational principle to produce the bulk hydro equations
together with perfect fluid boundary conditions and look
for boundary corrections to LVP to obtain the modified
DBC on the fluid which are in agreement with Eq. (7).
In contrast with Ref. [39], here we do not use any

expansions in νe and our results do not rely on small surface
angle approximations or on any assumption about the
structure of the boundary layer.
Luke’s variational principle.—Let us start from the

simplest case of the incompressible potential fluid flow,
that is, v ¼ ∇θ. Luke’s variational principle is written in
terms of the velocity potential θ as follows:

SM ¼ −
Z

dt
Z
M

d2x

�
∂tθ þ

1

2
ð∂iθÞ2

�
; ð9Þ

where M is the 2D fluid domain with the boundary [43].
Variation over θ in the bulk gives Δθ ¼ 0—the incom-
pressibility condition. It is also straightforward to
obtain Eq. (8) as an identity if the modified pressure is
identified as

p̃ ¼ −∂tθ −
1

2
ð∂iθÞ2: ð10Þ

Thus, the action Eq. (9) produces bulk equations [Eqs. (1)
and (8)] for a potential flow. The bulk vorticity of such flow
vanishes identically ω ¼ 0, implying p̃ ¼ p. Let us now
keep track of boundary terms and assume that the bulk
equation of motion Δθ ¼ 0 is satisfied. Hence, varying
Eq. (9) over the velocity potential θ and over the shape of
the fluid domain M, we obtain that all the nontrivial
dynamics resides on the fluid boundary and the action
variation becomes [for details see Supplemental Material
(SM) [44] ]
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δSM ¼
Z

dt
Z
Γ
ds½δθðð∂tΓÞn − ∂nθÞ þ ðδΓÞnp̃�: ð11Þ

Here Γ ¼ ∂M is the spatial boundary of the fluid domain
and s is the natural parameter along the boundary so that
dx2 þ dy2 ¼ ds2. The variation over the boundary values
of the potential θ, i.e., the first term in the integrand, gives
the KBC Eq. (5). The variation of the boundary, i.e., the
second term in the integrand in Eq. (11), gives the
vanishing pressure boundary condition p̃jΓ ¼ 0 well
known for ideal fluids. The latter is markedly different
from the effective DBC [Eq. (7)] derived in Ref. [39].
Therefore, while the variational principle Eq. (9) produces
all equations and boundary conditions for ideal fluid it does
not account for the contributions from odd viscosity.
Boundary term.—The main result of this work is that in

order to obtain the effective DBC [Eq. (7)], the following
boundary term should be added to LVP:

SΓ ¼ νo

Z
dt

Z
Γ
dsð∂tΓÞnα; ð12Þ

where s is the natural parameter along the boundary and α
is the angle between the surface and some fixed direction,
check Fig. 1. Two remarks are in order. (i) The term
Eq. (12) is constructed purely from the local boundary
geometry data and does not contain, e.g., velocity potential
θ. This means that the KBC Eq. (5) is not modified by this
term. (ii) Naively, Eq. (12) contains the preferred direction
—the reference axis for α. However, shifting α by constant
does not change Eq. (12) because

R
Γ dsð∂tΓÞn ¼ 0 due to

the KBC and incompressibility of the fluid. Later on we
will present a covariant way of writing Eq. (12).
Let us first consider the example of a half-plane

geometry when the fluid domain M is given by
y ≤ hðx; tÞ. We choose the reference direction to be the
x direction and write the angle α explicitly as α ¼ tan−1 hx.
In this geometry ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x

p
dx and for normal velocity

of the boundary we have

ð∂tΓÞn ¼
htffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x

p ¼ vn; ð13Þ

so that Eq. (12) can be written as

SΓ ¼ νo

Z
dt

Z
R
dx htα ¼ −νo

Z
dt

Z
R
dx hαt; ð14Þ

with αt ¼ ðhxt=1þ h2xÞ. Computing the variation of
Eq. (14) we obtain (for details see SM [44])

δSΓ ¼ −2νo
Z

dt
Z
Γ
dsðδΓÞn∂sð∂tΓÞn; ð15Þ

where ð∂tΓÞn is given by Eq. (13) and ðδΓÞn ¼
δh=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x

p
.

It is easy to see that the variation δðSM þ SΓÞ over ðδΓÞn
given by Eqs. (11) and (15) gives the modified boundary
condition Eq. (7). Notice that the rhs of Eq. (15) is purely
geometric, since ∂sð∂tΓÞn is the angular velocity of the
boundary.
The same analysis can be repeated for the geometry of a

disk, i.e., a simply connected droplet producing again
Eq. (15) [45]. Therefore, the variational principle with
the action

S ¼ SM þ SΓ ð16Þ

defined in Eqs. (9) and (12) produces an incompressibility
condition and the Euler equation, Eq. (8), with KBC Eq. (5)
and effective DBC, Eq. (7). Explicitly, the full set of
equations can be written as

Δθ ¼ 0; x ∈ M; ð17Þ

∂nθ ¼ ð∂tΓÞn; x ∈ Γ; ð18Þ

∂tθ þ
1

2
ð∂iθÞ2 ¼ −2νo∂sð∂tΓÞn; x ∈ Γ: ð19Þ

The obtained hydrodynamics describes incompressible
potential flows of the fluid with odd viscosity. This is the
main result of this work. We will remove the requirement of
potentiality of the flow later in this letter.
Effective contour dynamics.—In the case of an irrota-

tional bulk flow, the full dynamics is completely deter-
mined by the boundary motion. One can express Eqs. (18)
and (19) purely in terms of boundary fields using Eq. (17).
To do that we introduce the boundary field θ̃ ¼ θjΓ or
explicitly θ̃ðs; tÞ ¼ θ(xðs; tÞ; yðs; tÞ; t) with boundary Γ
given parametrically by functions of the natural parameter
s along the boundary. We introduce the material derivative
at the boundary Dt ¼ ∂t − ð∂tΓÞs∂s and use the identity

Dtθ̃ ¼ ∂tθjΓ þ ð∂nθÞð∂tΓÞn ð20Þ

in Eq. (19) together with Eq. (18) and obtain

ŝ

n̂

α

FIG. 1. The choice of normal n̂ and tangent ŝ unit vectors, and
the angle α for the case of half-plane geometry.
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Dtθ̃ þ
1

2
ð∂sθ̃Þ2 −

1

2
ð∂tΓÞn2 ¼ −2νo∂sð∂tΓÞn: ð21Þ

Equation (18) can also be expressed in terms of boundary
fields using Eq. (17). It has a form

ð∂tΓÞn ¼ dDN θ̃; ð22Þ

where dDN is a Dirichlet to Neumann operator which
depends on the shape of the domain and can be expressed
in terms of the Dirichlet Green function of the Laplace
operator [46] (see SM [44]) as

dDN θ̃ðsÞ ¼
Z
Γ
ds0½∂n∂n0Gðx; x0Þ�θ̃ðs0Þ: ð23Þ

Equations (21) and (22) fully determine boundary
dynamics of the fluid domain. They can be considered
as equations for fields θ̃ðs; tÞ, xðs; tÞ, and yðs; tÞ specifying
both the position of the boundary and the boundary value of
the potential. The reparametrization invariance of Eqs. (21)
and (22) can be used to remove one of the degrees of
freedom. For example when the domain is given by y ≤
hðx; tÞ one can rewrite Eqs. (21) and (22) in terms of two
fields θ̃ðx; tÞ and hðx; tÞ. For this case one also can find dDN
as an expansion in h and obtain [39]

dDNθ ¼ −θ̃Hx − ½hθ̃x þ ðhθ̃Hx ÞH�x þ…; ð24Þ

where the Hilbert transform is defined as fHðxÞ ¼
⨍ ðdx0=πÞ½fðx0Þ=ðx0 − xÞ�.
Equations (21) and (22) are exact expressions given by

the action, Eq. (16). The approximate versions of these
equations using Eq. (24) can be found in Ref. [39].
It is even easier to derive the effective one-dimensional

action corresponding to Eqs. (21) and (22). We integrate
Eq. (16) by parts and use the bulk incompressibility of the
fluid Δθ ¼ 0 to obtain (for details see SM [44])

S1D ¼
Z

dt

�Z
Γ
dsð∂tΓÞnðθ̃ þ νoαÞ −H

�
; ð25Þ

H ¼ 1

2

Z
Γ
dsðθ∂nθÞΓ ¼ 1

2

Z
Γ
dsθ̃dDN θ̃ : ð26Þ

The Hamiltonian, Eq. (26), is nothing but the total kinetic
energy of the fluid given by the second term of Eq. (9).
The variations of Eq. (25) with respect to θ̃ and displace-
ments of the boundary produce equations of motion,
Eqs. (21) and (22). These variations can be computed
using the Hadamard’s variational formula, defined in
Refs. [47,48]; however the most straightforward way to
calculate such variations is to rewrite Eq. (26) in its local
form as a two-dimensional integral.

Hamiltonian structure of contour dynamics.—Instead of
studying the boundary dynamics for a general fluid domain
M, let us focus here on the particular case when M is
given by y ≤ hðx; tÞ. Then, the action Eq. (25) can be
rewritten as

S1D ¼
Z

dt

�Z
R
dxhtðθ̃ þ νoαÞ −H

�
; ð27Þ

where the Hamiltonian is given by Eq. (26), with
ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x

p
dx. Let us turn our attention to the first

term of Eq. (27). We immediately see that h and θ̃ − νoα are
canonically conjugated variables so that Poisson brackets
become [49]

fh; h0g ¼ 0; fθ̃; h0g ¼ δðx − x0Þ; ð28Þ

fθ̃; θ̃0g ¼ νo

�
1

1þ h2x
þ 1

1þ h0x2

�
∂xδðx − x0Þ: ð29Þ

Note that the Poisson structure reduces to the well-known
Zakharov’s Poisson structure [50] when νo ¼ 0. In the limit
of small slopes hx ≪ 1 the bracket Eq. (29) was obtained in
Ref. [39]. However, we emphasize here that the Poisson
structure (28), (29) is an exact consequence of the varia-
tional principle (16), (9), (14) without any additional
approximations.
Boundary term and geometry.—The boundary term

Eq. (12) involves some arbitrariness in choosing a reference
direction. In this paragraph, we aim to give a more
covariant way of this form and to provide a geometrical
picture associated with this boundary action. For that, it is
convenient to express SΓ in terms of differential forms.
Since n̂ ¼ ðsin α;− cos αÞ, we can associate the derivatives
of the angle α to the boundary extrinsic curvature one-form
K ¼ Kμdxμ (for details, vide Ref. [29])

Kμ ¼ ni∂μsi ¼ ni∂μn�i ¼ ∂μα: ð30Þ
Integrating by parts, we can rewrite Eq. (12) as

SΓ ¼ −νo
Z
R×Γ

A ∧ K; ð31Þ

where A is a one-form whose exterior derivative is the
plane volume-form, that is, dA ¼ dx ∧ dy. There is an
ambiguity in the definition of A, since A0 ¼ Aþ dΛ gives
us dA0 ¼ dA. However, this gauge freedom does not affect
the boundary action Eq. (31) [51].
As an example let us consider A ¼ −ydx forM given by

y ≤ hðx; tÞ. Then, Eq. (31) reproduces Eq. (14).
For the droplet case, M is defined in polar coordinates

by r ≤ Rðφ; tÞ. If we take A ¼ 1
2
r2dφ, we then obtain:

SΓ ¼ −
νo
2

Z
R×Γ

R2αtdt ∧ dφ: ð32Þ
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Conclusions.—We presented a variational principle
which accounts for odd viscosity effects in incompressible
fluid dynamics. The boundary part of the proposed action is
purely geometrical and fully determined by the symmetries
of the system. Therefore, we expect the boundary condition
Eq. (7) to be universal and independent of the exact
structure of the boundary layer, given this boundary layer
to be sufficiently thin. In particular, Eq. (7) reproduces the
approximate equations obtained in Ref. [39], which were
derived in the limit of very small, but nonvanishing shear
viscosity. We also expect the same boundary conditions
assuming the boundary layer structure to be determined by
a finite compressibility of the fluid. If the fluid is com-
pressible, the odd viscosity affects the flow of the fluid in
the bulk as well. While it is relatively straightforward to
construct a variational principle for the compressible fluid,
its connection to the incompressible limit is subtle and will
be discussed elsewhere.
The variational principle [Eqs. (16) and (12)] gives

hydrodynamic equations for an incompressible fluid with
odd viscosity under the assumption that the tangent stress-
free surface boundary conditions can be satisfied by a thin
boundary layer. This is not the case for all fluid flows. For
example, in the geometry of an expanding air bubble exact
solutions show strong dependence of the bulk flow on shear
viscosity [37]. Also, even if the assumption of a thin
boundary layer is satisfied initially it might break at finite
time [39]. The applicability of the thin boundary layer
assumption is beyond of the scope of this Letter.
In the irrotational case, the degrees of freedom reside on

the boundary and the effective dynamics is one dimensional
and Hamiltonian, albeit nonlocal. The derived Hamiltonian
structure modifies the well-known Hamiltonian structure of
incompressible ideal fluids [50]. While, for simplicity, we
presented here only the irrotational case, the generalization
to more general flows, with nonzero vorticity, is straight-
forward and requires the addition of more Clebsch varia-
bles [vide SM for more details [44] ].
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