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Electromagnetic multipoles have been broadly adopted as a fundamental language throughout
photonics, of which general features such as radiation patterns and polarization distributions are generically
known, while their singularities and topological properties have mostly been left unattended. Here we map
all the singularities of multipolar radiations of different orders, identify their indices, and show explicitly
that the index sum over the entire momentum sphere is always 2, consistent with the Poincaré-Hopf
theorem. Upon those revealed properties, we attribute the formation of bound states in the continuum to the
overlapping of multipolar singularities with open radiation channels. This insight unveils a subtle
equivalence between indices of multipolar singularities and topological charges of those bound states. Our
work has fused two fundamental and sweeping concepts of multipoles and topologies, which can
potentially bring unforeseen opportunities for many multipole-related fields within and beyond photonics.
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Electromagnetic multipoles characterized by vector
spherical harmonics constitute a complete basis for light
field expansions and are playing indispensable roles in
diverse branches of optics and photonics [1–3]. Those
multipoles have been extensively studied and their general
features, such as radiation patterns, polarization distribu-
tions, far-field parities, and so on, have been comprehen-
sively exploited for various applications. A rather
outstanding example of this is the burgeoning field of
metaoptics largely built on electric and magnetic multipoles
of different orders, the interferences amongwhich can render
enormous extra freedom for manipulating light-matter inter-
actions in both linear and nonlinear regimes [4–7].
In spite of the great achievements relying on electromag-

neticmultipoles, an unfortunate situation is that rare attention
has been paid to those dark directions along which there are
no radiations. Those directions are naturally considered to be
trivial; singularities and topological features of multipoles
have neither attracted much interest nor been properly
investigated. This is rather puzzling, because from a math-
ematical viewpoint, in the far field multipolar radiation is
transverse and perfectlymakes an elementary case of tangent
vector fields on amomentum sphere. Depending on the order
of multipoles, there are a finite number (at least one) of
singularities (zeros or dislocations) of the pure (real or
imaginary) vector fields. They are isolated directions where
there are no radiations and for which Poincaré indices
(winding numbers or topological invariants) can be assigned.
Moreover, the Poincaré-Hopf theorem, or more precisely the

hairy ball theorem for this specific case, can be simply
applied [8–11]. It is even more stunning that such a situation
has been stagnant, withstanding the recent overwhelming
trend of incorporating topological concepts into almost every
branch of physics [12–17]. Considering that electromagnetic
multipoles broadly serve as a basic language for descriptions
and explanations of various optical effects, to clarify their
topological features is of apparently great significance,
especially for the expanding field of topological photon-
ics [16,17].
In this Letter, we reapproach electromagnetic multipoles

from a topological perspective, focusing on distributions of
singularities and their indices of the corresponding tangent
vector fields on an S2 momentum sphere. A comprehensive
map is given, pinpointing all singularities with their indices
for multipoles of different orders. It is shown explicitly that
of all multipoles the index sum over the entire momentum
sphere is always 2 (Euler characteristic of a sphere),
consistent with the Poincaré-Hopf theorem [8,9]. Based
on this revelation, we reinterpret the recently observed
bound states in the continuum (BICs) [18] from a multi-
polar perspective and reveal the origin of overlapping
radiation singularities with open radiation channels.
We further discover that topological charges of the BICs
demonstrated have a multipolar underlying structure,
which is essentially equivalent to singularity indices of
corresponding multipolar radiations. The incorporation of
topological terminology into classical multipoles can
potentially rejuvenate many multipole-related studies,
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paving the way for introducing established topological
concepts and advanced functionalities into more disciplines
both within and beyond photonics [10,11].
Electromagnetic multipoles can be categorized

into magnetic and electric groups, the radiated electric
(magnetic) fields of which are characterized by vector
spherical harmonics Mlm (Nlm) and Nlm (Mlm), respec-
tively [1,2,19]. For analysis convenience, one specific
expression of Mlm is chosen [2,19]

Mlm ¼ −
m

sin θ
sinðmϕÞPm

l ðcos θÞêθ

− cosðmϕÞ dP
m
l ðcos θÞ
dθ

êϕ: ð1Þ

Here we have dropped the radially dependent terms to focus
on the tangent fields; Pm

l ðcos θÞ (−l ≤ m ≤ l) denotes
associated Legendre polynomials [23]; basis vectors êθ,
êϕ, and êr, polar and azimuthal angles θ and ϕ are shown in
Fig. 1(a); Mlm · êr ¼ 0 and Nlm ·Mlm ¼ 0. As a first step,
we investigate the poles with j cos θj ¼ 1, where ϕ is not
defined. Except for jmj ¼ 1, both are singularities and the
index is as follows [19]:

Ind ¼ 1 − jmj; j cos θj ¼ 1: ð2Þ

Whenm ¼ �1, the poles are not singular, for which we can
still assign the index of 0 and thus Eq. (2) is still valid [19].
Next we turn to regions excluding the poles, where for

m ¼ 0 there are no (isolated) singularities [19]. When
m ≠ 0, according to Eq. (1), a singularity requires that both
components along êθ and êϕ are zero, and thus indices and
positions of singularities are [19] as follows:

Ind ¼ −1; cosðmϕÞ ¼ Pm
l ðcos θÞ ¼ 0;

Ind ¼ þ1; sinðmϕÞ ¼ dPm
l ðcos θÞ
dθ

¼ 0: ð3Þ

For 0 < θ < π and 0 ≤ ϕ ≤ 2π, both sinðmϕÞ ¼ 0 and
cosðmϕÞ ¼ 0 have 2jmj solutions, whereas equations of
Pm
l ðcos θÞ ¼ 0 and ½dPm

l ðcos θÞ=dθ� ¼ 0 have l − jmj and
l − jmj þ 1 solutions, respectively [23]. It means that
except for the poles, there are 2jmjðl − jmjÞ singularities
with index of −1 and 2jmjðl − jmj þ 1Þ singularities with
index of þ1 (this is still a valid statement for m ¼ 0 [19]).
Basically the index sum for all singularities is
2ð1 − jmjÞ þ 2jmjðl − jmj þ 1Þ − 2jmjðl − jmjÞ, which
would always make up to 2 and agrees with the
Poincaré-Hopf theorem [8,9].
Up to now, we have discussed only magnetic multipoles

characterized by Mlm with one specific expression shown
in Eq. (1). For the other expression of Mlm [with sinðmϕÞ
and cosðmϕÞ interchanged and êθ changed to −êθ [2,19]),
identical distribution map for singularities and indices
would be obtained except for an interchange between
sinðmϕÞ and cosðmϕÞ in Eq. (3). For electric multipoles
characterized by Nlm, the duality of Maxwell equations
requires that the corresponding tangent fields can be
obtained directly from those of Mlm (the terms with radial
dependence are dropped for studies of tangent fields) by the
following transformation [2,19]: êθ → êϕ and êϕ → −êθ.
Because the transformation above would neither change the
position nor the index of the singularity [19], as a result
both electric and magnetic multipoles of the same order
ðl; mÞ share the same singularity and index distributions, as
summarized in Table I. For example, Fig. 1(b) shows
radiation patterns and pinpoint some representative singu-
larities with indices for three multipoles (see Ref. [19] for
more scenarios). The vector field patterns close to singu-
larities of different indices are shown in Fig. 1(c). For the

ê

ê
ˆre

Source Sink Center Saddle

l=4, m=0 l=4, m=3 l=4, m=4

(a) (b)

(c)

0

max

FIG. 1. (a) Spherical polar coordinate system ðr; θ;ϕÞ with the associated orthonormal basis vectors êθ, êϕ and êr indicated.
(b) Radiation patterns for multipoles of order ðl; mÞ. Singularities that represent each category of Table I are pinpointed and the
corresponding indices are specified. (c) Vector field patterns close to singularities of different indices from −3 to þ1, which have
covered all sorts of singularities indicated in (b).
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case of indexþ1, the singular point could be a source (sink)
or a center, depending on which field (electric or magnetic)
we employ to show the field lines [19].
Table I shows that a singularity with index larger thanþ1

is not accessible with an individual multipole. In contrast, if
a series of multipoles of different orders and/or natures are
combined together, a singularity with larger positive index
is always accessible, which can be simply justified by the
following arguments: for a specific index, we can always
predesign a continuous tangent vector field that includes
such a singularity; the electromagnetic multipoles consti-
tute an orthogonal and complete bases for vector field
expansion; the predesigned vector field can always be
expanded into a set of multipoles, with expansion coef-
ficients of alm and blm that are associated with Nlm and
Mlm, respectively [19].
According to the Poincaré-Hopf theorem [8,9], the index

sum for all singularities over the momentum sphere should
always be 2, being the radiations from an isolated multipole
or a set of multipoles. The simplest allowed case of this
theorem is that there is only one singularity (at least one
singularity) and the index thus has to be þ2. This
corresponds to (generalized) Kerker conditions (Kerker
multipoles) or (generalized) Huygens sources [4,5,7]. The
field pattern close to a singularity of index þ2 (also termed
as dipole singularity [8,9]) is shown in Fig. 2(a). This type

of singularity can be obtained from interferences of a pair
of electric and magnetic multipoles of the same order,
magnitude, and phase (alm ¼ blm, m ¼ �1), but opposite
parities [24,25], with the first three cases of over-
lapping dipoles, quadrupoles, and octupoles shown in
Figs. 2(b)–2(d).
For a tangent and continuous vector field Mlm obtained

from Eq. (1) by forcing the following transformation
(forbidden for m ¼ �1 that breaks the continuity of the
vector field [19]) êθ → −êθ (or equivalently êϕ → −êϕ)

Mlm ¼ m
sin θ

sinðmϕÞPm
l ðcos θÞêθ

− cosðmϕÞ dP
m
l ðcos θÞ
dθ

êϕ: ð4Þ

The singularity distribution table for Mlmðjmj ≠ 1Þ would
be the same as Table I, except that the index in the second
column is changed from 1 − jmj, −1, þ1 to 1þ jmj, þ1,
−1 [19]. This means that for such a transformed vector
field, the index for both singularities at poles would be
1þ jmj. For example, in Fig. 2(e), we show the field
patterns close to a singularity of indexþ3, which is present
on the poles of the radiation pattern of M22 [shown in
Fig. 2(f); despite the index difference, the radiation pattern
is the same as that of M22 [19] ]. As has been already
explained, M22 cannot be represented by an individual
multipole, but by a series of multipoles, with the multipolar
composition (normalized magnitudes of expansion coef-
ficients) shown in Fig. 2(g).
After mapping out the singularities and their indices for

electromagnetic multipoles, now we proceed to show how
those properties could be exploited to gain deeper insights,
taking recently demonstrated BICs as an example [18]. For
convenience of multipolar analysis, the periodic structure
can be approached from an alternative reductionist per-
spective [26–30]: it can be treated as an infinite ensemble of
radiating items (unit cells); the overall optical properties of
the periodic structure can be interpreted as interferences of
radiations from all the unit cells. For an isolated radiating
item, there are an infinite number of open out-coupling
radiation channels, corresponding to all the points (direc-
tions) on the momentum sphere. In contrast, for the
periodic structure, there are only a finite number of such
channels, corresponding to diffractions channels of differ-
ent orders along certain directions. From this perspective,
the formation of a BIC can be attributed to overlapping of
the radiation singularities of each unit cell with the open
diffraction channels of the periodic structure. An index
could be assigned to the singularity of the unit-cell
radiation that overlaps with the open channel (there can
be extra singularities not overlapping with such channels),
which is exactly the topological charge of the induced
BIC [18,31].
To further crystallize what has been stated above, we turn

to the photonic crystal slabs of square or hexagonal lattices,

TABLE I. Distributions of the singularities and their indices for
radiated vector fields from a multipole of order ðl; mÞ.

Positions Index Number Total indices

j cosðθÞj ¼ 1 1 − jmj 2 2ð1 − jmjÞ
cosðmϕÞ ¼ Pm

l ðcos θÞ 2jmj× −2jmj×
¼ 0; j cosðθÞj ≠ 1 −1 ðm ≠ 0Þ ðl − jmjÞ ðl − jmjÞ
sinðmϕÞ ¼ ½dPm

l ðcos θÞ=dθ� 0 (m ¼ 0) 2jmjðl− 2jmj×
¼ 0; j cosðθÞj ≠ 1 þ1 (m ≠ 0) jmj þ 1Þ ðl − jmj þ 1Þ

a b=11 11 a b=21 21 a b=31 31

(a) (b) (c) (d)

(e) (f)

Kerker Dipole Kerker Quadrupole Kerker Octupole

0

0.5

1

22| |b 32| |a 42| |b 52| |a 62| |b

(g)Expansion Coefficients 
             for 

FIG. 2. (a),(e): Vector field patterns close to singularities of
indices þ2 and þ3. (b)–(d) Multipolar combinations (Kerker
dipole, quadrupole, and octupole) that end up with only one
singularity of index þ2. (f) Radiation patterns and singularity
distributions for transformed M22, which has to be expanded into
a series of multipoles, with normalized magnitudes of expansion
coefficients (up to l ¼ 6) shown in (g).
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which are widely employed for investigations into BICs
[18,31–36]. For a direct comparison between our results
frommultipolar analysis with those established ones, and to
connect the singularity indices of multipolar radiations to
the confirmed topological charges of BICs, we investigate
structures similar to those studied in Refs. [31,33]. The
photonic crystal slabs of square or hexagonal lattices of
circular air holes (slab refractive index n ¼ 1.5, width w,
lattice constant p, air hole diameter p=2) are studied, which
are shown as insets in Figs. 3(a) and 3(d). For both cases,
we show the dispersion curves of two representative bands
(one TE-like and one TM-like bands; ω̃ is the complex
mode eigenfrequency [19]).
First, we check the symmetry-protected BICs located on

the Γ points. For both lattices, there are two such BICs on
both the TE-like and TM-like bands [four BIC points A–D
are indicated in Figs. 3(a) and 3(d), with w ¼ p=2]. For
each of them, we show in Figs. 3(b), 3(c), 3(e), and 3(f) the
corresponding major dominant multipolar components (see
Ref. [19] for details of multipolar expansions based on
near-field currents) and the far-field radiation patters. The
four symmetry-protected BICs have a common feature that
unit-cell radiation corresponds to that of a dominant
individual multipole with fixed order, and the radiation
singularity overlaps with the allowed radiation channel
(radiation is zero along z direction). This agrees with our
previous discussions with regard to the multipolar inter-
pretation of the underlying mechanism of BICs. Moreover,
based on the dominant multipolar components, for each
singularity along z direction an index can be directly
assigned according to the j cosðθÞj ¼ 1 category in
Table I (other minor multipoles not shown slightly modify
the overall radiation pattern, while not affecting singularity
and index distributions [19]), which is exactly the topo-
logical charge revealed in Ref. [31].

Now we turn to the off-Γ-point accidental BICs [31,33],
taking the indicated point E (kxp=2π ¼ 0.299) in Fig. 3(a)
on the TM-like band for example (see similar analysis in
Ref. [19] for indicated BIC point F in Fig. 3(d) of the
hexagonal lattice). We show respectively both its multipolar
composition and reconstructed far-field patterns of the unit
cell in Figs. 4(b) and 4(d). As expected, Fig. 4(b) shows that
a pair of singularities (both of index þ1 guaranteed by σz
mirror symmetry) overlaps with the allowed diffraction
directions [ϕd ¼ 0 and θd ¼ arcsinðkx=k0Þ, where k0 is
total the angular wave number]. Moreover, the index þ1 of
the singularity agrees with the topological charge previ-
ously revealed [31]. This BIC would move to another
position E0 (kxp=2π ¼ 0.377) by changing w, as is shown
in Fig. 4(a). It is clear from Figs. 4(c) and 4(d) that the
multipolar composition changes accordingly such that
the multipolar singularity pair coincides with the new
diffraction direction, which ensures that the BIC can move
smoothly to the new position of different kx (see Ref. [19]
for decay states which correspond to separated singularities
and open channels).
Also according to Fig. 4(a), the symmetry-protected BIC

is fixed at Γ point with changing w, which can certainly be
explained through symmetry analysis [31,35–37]. Our
multipolar interpretation gives a different insight: for this
type of BIC, the unit-cell radiation is represented by
multipoles of order jmj ≠ 1 [19], the radiations of which
are intrinsically zero along z direction (see Figs. 1 and 3,
and Ref. [19]) and can thus maintain the BIC on Γ point. In
sharp contrast, for the accidental BICs shown in Fig. 4, zero
radiation is accidental that originates from completely
destructive multipolar interferences. Changing geometric
parameters would alter the multipolar ratios and thus also
the singularity positions, inevitably shifting the BICs.
Moreover, as we have argued before, if the unit-cell
radiation is represented by a dominant individual multipole,
it is not possible to obtain positive index (topological
charge) larger than þ1 (see Table I), no matter which band
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we rely on. Though symmetry analysis reveals that large
positive index is not forbidden [31,35–37], here we make a
further step to show more microscopically that, to obtain a
larger positive index, at least two combined multipoles are
required (see Fig. 2). This is probably synonymous with the
phenomenon that in previous studies large negative-index
BIC have been widely achieved [31,35–37], whereas their
positive counterparts rarely manifest themselves.
In conclusion, we revisit electromagneticmultipoles from

a topological perspective and provide a comprehensive map
for the distributions of singularities and their indices for
multipolar radiations. It is shown that for an individual
multipole, it is not possible to obtain singularity index larger
thanþ1, while for the combination of a series of multipoles,
there is no limit for its singularity, but only requires that
index sum of all singularities over the momentum space has
to be 2. Singularities of multipolar radiations are synony-
mous with the formation of BICs, as long as they coincide
with open radiation channels. Based on this multipolar
revelation, we further uncover the subtle equivalence
between singularity indices of multipoles and topological
charges of BICs. We emphasize here that by writing down
Eqs. (1) and (4), we have confined our discussions to vector
fields of pure real (or equivalently imaginary) nature.
Nevertheless, electromagnetic waves are generally complex
vector fields, from which we can define line fields (tensor
fields) and thus line singularities and half-integer Hopf
indices [10,11,38]. Such a study will be presented in our
upcomingwork.Considering the ubiquitous roles of electro-
magnetic multipoles all across photonics, our work will
accelerate the pervasion of topological concepts into more
optical branches and bring unperceived opportunities for
various applications. Furthermore, multipoles basically
serve as a fundamental tool and language for many other
fields involving wave effects, on which our work generally
sheds new light from a fundamental topological perspective.
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