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Slow-light waveguides can strongly enhance light-matter interaction, but suffer from a narrow
bandwidth, increased backscattering, and Anderson localization. Edge states in photonic topological
insulators resist backscattering and localization, but typically cross the bulk band gap over a single
Brillouin zone, meaning that slow group velocity implies narrow-band operation. Here we show
theoretically that this can be circumvented via an edge termination that causes the edge state to wind
many times around the Brillouin zone, making it both slow and broadband.
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When propagating through a medium, a pulse of light
can travel with a group velocity that is much slower than its
vacuum value [1–3]. This phenomenon of slow light has
been extensively studied due to its potential for applications
ranging from optical buffers to enhanced light-matter
interactions (and thus nonlinearity) [1,4–11]. Awell-known
problem encountered in slow-light systems arises from
fabrication imperfections: as one decreases the group
velocity of the light, it becomes increasingly sensitive to
disorder, leading to significant backscattering, loss, and
Anderson localization [12]. In recent years, significant
research effort has been dedicated to studying and realizing
photonic topological insulators [13–23]. These systems
possess chiral edge states that resist backscattering and
localization in the presence of disorder, yielding robust
one-way waveguides. They, therefore, constitute natural
candidates for generating robust slow light. Additionally, in
contrast to typical slow-light systems, which require special
designs to avoid reflections from the slow-light interface
[24], chiral edge states will automatically exhibit complete
transmission between topological fast-light and topological
slow-light regions, independent of the slow-light group
index and the details of the interface.
In many applications, the usefulness of a slow-light

system depends crucially on its bandwidth which, ideally,
should be large so that the light can be slowed over a large
range of frequencies [10]. In topological systems, a typical
edge termination—such as a zigzag edge of a honeycomb
lattice—produces an edge mode that crosses the bulk band
gap within a single Brillouin zone. As a result, reducing the
group velocity of the edge mode requires either slowing the
mode only in the vicinity of a given energy (e.g., midgap)
[25] or reducing the band gap [see Fig. 1(a)]. In both cases,
the reduced group velocity comes at the expense of
bandwidth. Additionally, in the latter case, the reduced
band gap means that the existence of the edge mode will be
more sensitive to disorder since disorder strong enough to
close the band gap can induce a topological phase transition.

In this Letter, we demonstrate that, by engineering the
edge termination, a topological edge mode can be made to
wind many times around the Brillouin zone as it crosses the
band gap, thereby generating a slow edge mode over a large
range of frequencies. The number of times the edge mode
winds is determined by the depth of the modification of the
edge termination measured into the bulk. In the direction
parallel to the edge, the termination does not expand the size
of the unit cell and, therefore, generatesmultiplewindings in
a manner distinct from simple band folding. Since the mode
is slowed without reducing the bulk band gap, its existence
remains protected against strong disorder (i.e., as long as it
does not close the large topological band gap). The ability to
slow the modewithout reducing its bandwidth is enabled by
the fundamentally 2D nature of the system, as different
frequencies reside at different depths in the structure. As a
result, the minimal group velocity attainable at a fixed
bandwidth is determined by the system size in the direction
orthogonal to the direction of propagation. In contrast to a
topological slow-light system that utilizes a standard edge
termination—where the 2D footprint of the bulk may be
viewed as a drawback, requiring an unnecessarily large
region to support a 1Dguidedmode—our proposed structure
makes use of this 2D region to enable wideband operation.
Designing the edge termination requires specifying a set

of parameters that can be tuned along the edge. The
implementation of the photonic topological insulator—for
example, whether it is realized using magneto-optics
[13,14], modulated resonators [17,26], or optomechanics
[22]—will determine this set of tunable degrees of freedom.
The central observation of this Letter, however, is not
restricted to a specific implementation but rather is generally
applicable to systems containing chiral edge states. We,
therefore, avoid assuming a specific photonic implementa-
tion and instead conceptually demonstrate the features of our
proposal in the Haldane model [27].
We begin with the Haldane model defined on a honey-

comb lattice with real first-neighbor couplings and complex
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second-neighbor couplings. We set the inversion symmetry
breaking mass to M ¼ 0 and the phases for the second-
neighbor couplings to ϕ ¼ π=2, with positive phases
assigned to counterclockwise hopping (see Fig. 1). We
denote the magnitudes of the first-neighbor and second-
neighbor couplings by c and c0, respectively. For definite-
ness, we take c0 ¼ c=10. We denote the lattice constant by
a and the lattice vectors by R1 ¼ að1; 0Þ and R2 ¼
að1=2; ffiffiffi

3
p

=2Þ. The nonzero value for ϕ places the system
in a topologically nontrivial phase with Chern number
C ¼ 1, so that opening the boundaries of the system
produces a topological edge mode that crosses the bulk
band gap as the momentum parallel to the edge is swept
across the Brillouin zone. We will consider a horizontal
strip geometry that is periodic in the x direction and finite in
the y direction, terminated on zigzag edges. We choose
coordinates such that the lowest site resides at y ¼ 0. We
then modify the Hamiltonian in the vicinity of the edge by
tailoring the couplings to control the behavior of the edge
mode. For simplicity, we will leave the upper edge of the
structure unchanged and only introduce modifications to
the lower edge.
When structuring the edge termination, there is signifi-

cant freedom available regarding the details of its design. A
very simple edge termination can be constructed by
beginning at a specified depth in the bulk and linearly
reducing the couplings from their standard value in the bulk
to zero at the edge. Here, the distance over which the
couplings are reduced controls the number of times the

edge mode winds around the Brillouin zone. The resulting
edge mode, however, will deviate significantly from the
ideal linear dispersion that is advantageous for slow-light
applications. Below, we describe a slightly more complex
edge termination that generates an improved dispersion and
serves as a good seed for further numerical optimization.
We emphasize, however, that this structure should not be
viewed as being fundamentally preferred, as one can also
design other edge terminations that produce similar results.
To construct the edge termination, we pattern the nearest-

neighbor couplings near the edge in the way illustrated
by Fig. 1(b). In particular, we reduce a subset of the
couplings—those indicated in the figure by wavy red
lines—by a factor ρðyÞ that depends on the height y of
the link center for the neighbor pair [i.e., c → ρðyÞc]. The
pattern alternately rescales horizontal and vertical cou-
plings, while interspersing regions in which the couplings
are left unchanged. Along the horizontal direction, the
pattern maintains fullR1 periodicity. Up to the values of the
rescaling factors, the pattern repeats after translation by
S ¼ 3R2. After n repetitions along S, the pattern terminates
into the bulk of the standard Haldane model (i.e., with all
nearest-neighbor couplings set to c). The resulting edge
termination, therefore, extends to a depth of nS into the
bulk. As we will see shortly, the value of n determines
the number of times the edge mode winds around the
Brillouin zone.
We choose the rescaling function ρðyÞ so that couplings

residing close to the edge are reduced more than couplings

(a) (b) (c)

FIG. 1. Panel (a) compares band structures for different methods of generating a slow topological edge state. The first two methods
slow the edge state over a narrow range of energies while the third method yields a slow edge state with a large bandwidth. Panels (b) and
(c) show how the third method can be implemented in the Haldane model. Panel (b) illustrates the edge termination, with wavy red lines
indicating reduced nearest-neighbor couplings. These couplings are reduced by a factor that begins at ρ0 at the edge and linearly tapers to
a final value ρf . Up to these factors, the nearest-neighbor coupling pattern repeats n times under translation by 3R2 before terminating
into the bulk (shown is the case n ¼ 2). Second-neighbor couplings (not shown) are rescaled using a simple linear taper (see text). As
indicated in the upper right-hand corner of the panel, the direction of positive phase hopping for the second-neighbor couplings is taken
to be counterclockwise. Panel (c) shows the resulting band structures. As n is increased, the edge state winds an increasing number of
times around the Brillouin zone as it crosses the band gap. For clarity, we have only structured the lower edge so that only the bottom-
localized edge mode exhibits an increased winding.
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residing deeper in the bulk. We take the rescaling factor to
begin at a value ρ0 on the edge and increase linearly to a
final value ρf before terminating into the bulk. Defining y0
and yf as the y coordinates of the link centers for the first
and last rescaled nearest-neighbor couplings (that is, y0 ¼
a=ð4 ffiffiffi

3
p Þ and yf ¼ nSy − 2a=

ffiffiffi

3
p

), we take ρðyÞ ¼
ðρf − ρ0Þðy − y0Þ=ðyf − y0Þ þ ρ0. Nearest-neighbor cou-
plings residing beyond yf are not rescaled and are set to
their bulk value c.
Similarly, we rescale next-neighbor couplings by a factor

ρ0ðyÞ which begins at the edge at ρ00, ends in the bulk at ρ0f,
and is linearly tapered in between. In contrast to the nearest-
neighbor couplings, every next-neighbor coupling near the
edge is rescaled (i.e., no couplings are skipped, as they are
for the nearest-neighbor pattern). The first rescaled next-
neighbor coupling resides at y00 ¼ 0, the final rescaled
next-neighbor coupling resides at y0f ¼ nSy, and the rescal-
ing function for the next-neighbor couplings is given by
ρ0ðyÞ ¼ ðρ0f − ρ00Þðy − y00Þ=ðy0f − y00Þ þ ρ00. Next-neighbor
couplings with y > y0f are set to their bulk value c0.
Tuning the parameters ðρ0; ρfÞ and ðρ00; ρ0fÞ allows us to
control the dispersion of the edge mode. In the remainder
of this Letter, we will set ðρ0; ρfÞ ¼ ð0.05; 0.28Þ and
ðρ00; ρ0fÞ ¼ ð0.15; 1.00Þ. These values were chosen to pro-
duce a simple edge dispersion exhibiting clear additional
windings around the Brillouin zone.
With the rescaling functions set as described above, the

number of repetitions n determines the number of times the
edge mode winds around the Brillouin zone as it crosses
the band gap. A standard zigzag edge is reproduced by
taking n ¼ 0. Sending n to nþ 1 causes the edge mode to
wind two additional times (i.e., Δkx → Δkx þ 4π=a)
around the Brillouin zone as it crosses the band gap.
The resulting band structures for n ¼ 0, 1, 2, 3 are shown in
Fig. 1(c).
For the n ¼ 0 edge termination (a standard zigzag edge),

the edge modes associated with the upper and lower edges
together form a continuously connected pair of bands. To
understand how this pair of bands can develop additional
windings, we study how the edge mode transforms under a
smooth interpolation between the n ¼ 0 and n ¼ 1 termi-
nations. We define H0ðkxÞ and H1ðkxÞ to be the Bloch
Hamiltonians for the n ¼ 0 and n ¼ 1 cases, respectively,
and define a one-parameter family of Hamiltonians
HλðkxÞ ¼ ð1 − λÞH0ðkxÞ þ λH1ðkxÞ that smoothly interpo-
lates between H0ðkxÞ and H1ðkxÞ as λ is varied over the
interval [0, 1]. In Fig. 2, we show a magnified view of the
resulting transformation. As λ is increased, a bulk mode is
pulled into the gap and approaches the edge mode localized
on the top edge [Fig. 2(c)]. Typically, these modes would
exhibit an avoided crossing due to their spatial overlap.
However, as the bulk mode is pulled into the band gap, it
becomes localized on the bottom edge, so that the overlap
becomes exponentially suppressed in the system size,
allowing it to cross the top-localized edge mode [Fig. 2(d)].

A similar process simultaneously occurs for a bulk band
residing below the band gap. As a result, the edge mode
acquires two additional windings around the Brillouin zone.
As the number of windings increases, the edge mode

utilizes degrees of freedom that reside at increasing depths in
the bulk. To study how the edge mode eigenstate profile
varies as its energy is swept across the band gap, we first
optimize the coupling pattern to minimize variations in the
group velocity (see Supplemental Material [28]) so that the
bottom-localized edge mode crosses each energy in the band
gap exactly once and each energy is associated with a unique
eigenstate (i.e., the optimization removes any nonmonoto-
nicity present in the edge bands and gives them nearly linear
dispersion). Figure 3 shows how the edge mode eigenstate
profile changes as the energy E is swept across the gap. The
intensity profile is shown over a single strip-geometry unit
cell. For simplicity, the intensities associated with the two
sublattices have been (additively) coarse grained into a single
intensity profile. At midgap,E ¼ 0, the edge mode resides at
the very edge of the structure. Away from midgap, it moves
deeper into the bulk, with increasing depths occupied by the
mode as the number of windings is increased. Note,
however, that even as the mode moves into the bulk, it
maintains a small cross-sectional mode profile. This feature

(a) (b)

(c) (d)

FIG. 2. Conversion of bulk modes to edge modes under a
smooth transformation between the n ¼ 0 and n ¼ 1 edge
terminations. Panel (a) shows the n ¼ 0 band structure, high-
lighting in the red box the region that is magnified in the
neighboring plots. Panels (b)–(d) show the transformation of
the bands as λ is swept from 0 to 1. A small system size is used to
clearly distinguish distinct bands. The two panels located to the
right of each band structure show the y dependence of the
eigenstate intensity profiles (over a single strip-geometry unit
cell) for the eigenstates jE1i and jE2i highlighted in the band
structure. As λ is increased, a bulk mode is pulled into the gap and
becomes localized on the bottom edge, allowing it to cross the
top-localized mode without hybridizing. A similar process occurs
simultaneously for a bulk band residing in the region E < 0 (not
shown). The resulting bottom-localized edge mode winds around
the Brillouin zone two additional times as it crosses the gap.
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is important for achieving enhanced light-matter interactions
in a slow-light system.
In typical slow-light systems, a reduction in the group

velocity is accompanied by an increased sensitivity to
fabrication imperfections so that light is more easily
scattered and localized by disorder. Topological edge states,
however, are known to resist localization and back-
scattering. To demonstrate how this feature applies to a
topological slow-light device, we perform time-domain
simulations in which we launch a narrow-band pulse into a
disordered slow-light region. We perform these simulations
both for a topological structure and for a topologically
trivial 1D array. For the topological structure, we use the
optimized edge terminations so that, in the absence of
disorder, the edge band has nearly linear dispersion. For the
trivial structure, we control the group velocity by varying
the nearest-neighbor coupling.
Defining v and v0 as the fast-light and slow-light group

velocities, respectively, we independently perform the
simulations for v=v0 ¼ 9 and v=v0 ¼ 18 (corresponding
to the optimized n ¼ 1 and n ¼ 2 edge terminations) using
on-site disorder with a strength of 5% of the band gap of the
topological structure. We describe these simulations in the
Supplemental Material [28]. The results are shown in
Fig. 4. The topological structure exhibits a clear improve-
ment, resisting the significant localization and backscatter-
ing that increase in severity for the trivial system as the
group velocity is reduced. More generally, for a wideband
pulse, the topological system will display a similar
improvement, but the pulse shape will undergo distortion
due to disorder-induced dispersion.

In conclusion, we have shown that, by increasing an edge
state’s momentum-space winding, it can be slowed without
sacrificing bandwidth. For the resulting structures, the
magnitude of the group velocity is decoupled from the
size of the band gap and from the periodicity along
the propagation direction. The structures, therefore, cir-
cumvent the recently suggested limitation [29] that the
strength of the topological protection derived from the size
of the band gap is tied to the group index.
For our proposed structure, the wideband nature of the

edge state may be viewed as a natural consequence of
slowing the mode in the presence of nontrivial topology:
due to the nonzero Chern number, the edge state is required
to fully traverse the band gap so that, in response to a
reduction of the group velocity of all of the in-gap states,
new states are extracted from the bulk and appended to the
edge band to enable it to cross the band gap. The way that
this is achieved is closely related to the system’s dimen-
sionality: the degrees of freedom required to support a 1D
wideband slow mode are extracted from the 2D reservoir of
bulk states.
From the perspective of experimental implementation,

the edge termination must be designed using the degrees of
freedom that can be tuned in the underlying photonic
topological insulator. This will require further studies
aimed at adapting our proposal to specific photonic
systems. In photonic crystals that break time-reversal
symmetry through magneto-optics [13,14], one could,
for instance, engineer an edge termination by varying

FIG. 3. Edge mode eigenstate profile as a function of energy for
the optimized edge terminations. Each constant E slice shows the
y dependence of the intensity distribution (over a strip-geometry
unit cell) of the edge state at energy E. Only the 30 sites nearest to
the edge are shown. The y coordinates are normalized to ay ¼ Ry

2

and the energy E is normalized to units of the band gap so that
E=E0 ¼ �1 correspond to the bulk band edges. Separate panels
are shown for the optimized edge terminations defined by n ¼ 2,
4, 6. As the number of windings is increased, the edge mode
utilizes degrees of freedom residing deeper in the bulk.

(a)

(b)

FIG. 4. Propagation of slow light in the presence of on-site
disorder. A pulse initially traveling in a fast-light region enters
and propagates through the slow-light region located between the
dashed white lines. The top row (a) shows the topological case
using the optimized edge terminations. The left- and right-hand
panels correspond to slowing factors of v=v0 ¼ 9 and v=v0 ¼ 18,
respectively. Each constant t slice shows the intensity profile of
the edge mode along the x direction (the direction of propaga-
tion). The time coordinate t is scaled to units of t0 ¼ 1=c. To
show the pulse purely as a function of x, the intensities have been
summed over the strip-geometry unit cell, collapsing the y
dependence of the pulse. The bottom row (b) shows the
corresponding results for a topologically trivial 1D system.
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the applied magnetic field in the vicinity of the edge or by
further patterning the positions and radii of the edge sites.
In proposals that utilize temporally modulated coupled
resonators [17,26] or driven optomechanical cavities [22],
both the coupling amplitudes and the pattern of relative
modulation phases could be structured near the edge. Our
work motivates further studies of how these degrees of
freedom can be engineered along the edges of a system to
control the properties of topological edge states and, in
particular, to generate robust slow light.
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