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4Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, F-75005 Paris, France

(Received 25 November 2018; revised manuscript received 28 January 2019; published 15 April 2019)

Interatomic Coulombic decay (ICD) is a mechanism that allows microscopic objects to rapidly exchange
energy. When the two objects are distant, the energy transfer between the donor and acceptor species takes
place via the exchange of a virtual photon. On the contrary, recent ab initio calculations have revealed that
the presence of a third passive species can significantly enhance the ICD rate at short distances due to the
effects of electronic wave function overlap and charge transfer states [Phys. Rev. Lett. 119, 083403 (2017)].
Here, we develop a virtual photon description of three-body ICD, allowing us to investigate retardation and
geometrical effects which are out of reach for current ab initio techniques. We show that a passive atom can
have a significant influence on the rate of the ICD process at fairly large interatomic distances, due to the
scattering of virtual photons off the mediator. Moreover, we demonstrate that in the retarded regime ICD
can be substantially enhanced or suppressed depending on the position of the ICD-inactive object, even if
the latter is far from both donor and acceptor species.
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Interatomic Coulombic decay (ICD) is an ultrafast
process by which energy can be transferred between
microscopic objects (e.g., atoms, ions, clusters, quantum
dots). First predicted just over two decades ago [1], it
involves an excited donor species that then decays and
transmits sufficient energy to a neighboring acceptor
species that the latter can be ionized. Since most of the
excess energy of the donor is spent ejecting an electron
from the acceptor, a slow electron is left in the continuum
[2]. As well as being one of the experimental signatures of
ICD [3], it has been shown that such slow electrons can be
damaging in a biological context [4].
The ICD rate is an important property in characteriza-

tion of the process. However, its computation is a
challenging task. Most calculations of ICD rates use
techniques adapted from computational quantum chem-
istry, necessitated by the donor and acceptor species being
very closely spaced so that orbital overlap has a dramatic
effect on the system [5,6]. However, at slightly larger
distances it is possible to use a “virtual photon approxi-
mation” [5]. There, the donor and acceptor are considered
as separate objects coupled via the quantized electromag-
netic field. This results in a simple analytic expression for
the rate that depends on the single-body decay rate of the
donor, the photoionization cross section of the acceptor
and their mutual separation. This expression is often used
as a consistency check for the large-distance behavior of a
particular quantum chemical calculation. Furthermore, an
analytical formula for the ICD rate provides a simple

means to investigate large systems based on the decom-
position of the clusters into pairs [7,8].
Recently, a type of three-body ICD mechanism known as

superexchange ICD was proposed [9]. Based on extensive
ab initio calculations, it was shown that the rate of energy
transfer can be substantially enhanced in the presence of a
third ICD-inactive mediating atom. A related process has
also been demonstrated numerically in electronic decay
through OCnF2 chains [10]. However, there is no equiv-
alent of the virtual photon approximation for the three-body
ICD process. This problem can be solved by making use
of a macroscopic quantum electrodynamics (QED) based
approach recently put forward in Ref. [11] where the effects
of the environment near the decaying pair can be accounted
for. It should be mentioned that the corresponding situation
for Förster resonant energy transfer (FRET) has been
investigated previously [12,13].
In this Letter we develop the virtual photon approxima-

tion for three-body ICD and find agreement with ab initio
data in the relevant regimes. The new theory allows us to
readily investigate retardation and geometrical effects in
three-body ICD, providing insight into long-range energy
transfer processes that are out of reach for current ab initio
techniques. Our method is based on the recently derived
formula for the ICD rate in a generic medium [11]:

Γ¼2π2
X

channels

γDσAðℏωDÞTr½GðrA;rD;ωDÞ ·G�ðrD;rA;ωDÞ�;

ð1Þ
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where γD is the free-space decay rate of the donor species
and σAðℏωDÞ is the photoionization cross section of the
acceptor. The quantity Gðr; r0;ωÞ is the Green’s tensor of
the Helmholtz equation, describing propagation of excita-
tions of frequency ω from point r0 to r, taking into account
the effects of any environment that may exist between or
around the donor and acceptor.
We consider a process where an ICD-inactive atom

absorbs the virtual photon emitted from the donor and
then re-emits this photon, which is subsequently absorbed
by the acceptor, ejecting an electron and finishing the ICD
process, as illustrated in Fig. 1.
In order to calculate the rate in this situation, we need an

explicit form of the Green’s tensor for an environment
consisting of a single atom. To obtain this we expand
the Green’s tensor in a Born series around a known
“background” Green’s tensor Gð0Þ [14], which could
represent a vacuum, a homogeneous medium, a dielectric
plate, or any other geometry for which the Green’s tensor
is analytically known. We have the following:

Gðr;r0;ωÞ¼Gð0Þðr;r0;ωÞ

þμ0ω
2

Z
d3snðsÞGð0Þðr;s;ωÞ ·αðωÞ ·Gðs;r0;ωÞ

ð2Þ

where αðωÞ is the polarizability tensor of the mediating
atom at frequency ω, and μ0 is the vacuum permeability.
The integral runs over the volume of any dielectric bodies
not included in Gð0Þ, each of which has a position-
dependent atomic number density nðrÞ. Equation (2) is
exact but infinitely recursive, nevertheless a result for any
order can be found by repeated substitution. For example
the first order approximation can be obtained by substitut-
ing G → Gð0Þ on the right-hand side of Eq. (2). The result is

the Green’s tensor for the background environment
described by Gð0Þ, with a single atom added. The terms
in this approximation can be visualized as scattering from r0
to r via intermediate scattering points s with coupling
strength determined by αðωÞ. In our system the mediator
is a single atom in a vacuum at position rM, which we
describe via a Dirac delta function number density
nðsÞ ¼ δðs − rMÞ. Using this in the first-order approxima-
tion to the Born series [Eq. (2)] we have

Gð1Þðr; r0;ωÞ ¼ Gð0Þðr;r0;ωÞ
þ μ0ω

2Gð0Þðr;rM;ωÞ · αðωÞ ·Gð0ÞðrM;r0;ωÞ
ð3Þ

The higher-order terms depend on self-interactions, corre-
sponding to quantities like Gð0ÞðrM; rM;ωÞ. These are
already taken into account by using an observed polar-
izability that includes QED corrections [15], meaning that
Eq. (3) is in principle an exact relation. Crucially, Gð1Þ now
only depends on the vacuum Green’s tensor Gð0Þ and the
polarizability α, which are both well known (see, e.g.,
Ref. [16] and the Supplemental Material [17]). Substituting
the Green’s tensor [Eq. (3)] into the rate formula [Eq. (1)],
one finds three types of term which are of zeroth, first, and
second order in the polarizability. One can then proceed to
use the vacuum Green’s tensor in these four terms and work
out ICD rates for arbitrary arrangements of donor, media-
tor, and acceptor. However, the resulting expressions are
extremely complex and lengthy (see Supplemental Material
[17]), so they do not provide much insight or intuition. We
can considerably simplify calculations by anticipating that
the transition wavelength of the donor we consider is far
longer than the few Ångströms at which ICD processes are
active. This means we are in the nonretarded (static)
regime, in which the Green’s tensor is given by (see,
e.g., Ref. [16])

Gð0Þ
NRðr; r0;ωÞ ¼ −

c2

4πω2ρ3
ðI − 3eρ ⊗ eρÞ ð4Þ

where ρ ¼ jr − r0j, eρ is a unit vector in the direction of
r − r0 and I is the 3 × 3 identity matrix. We also simplify
the derivation by assuming that the mediator has a real,
isotropic, and frequency-independent polarizability
αðωÞ ¼ αI. It is also useful to work with the polarizability
volume α=ð4πε0Þ (where ε0 is the vacuum permittivity)
rather than the polarizability itself so for the rest of
this article we make the replacement α=ð4πε0Þ ↦ α.
Substituting the nonretarded Green’s tensor [Eq. (3)] into
the rate formula [Eq. (1)], we find

FIG. 1. The process we consider. An excited donor relaxes to
its ground state, emitting a photon which eventually ionizes an
acceptor. On the way, this photon may interact with a mediating
atom, whose contribution is considered perturbatively as far as is
consistent with the perturbation theory that leads to Eq. (1).
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ΓNR ¼ C6

�
1

ρ6AD
þ 3α2

2ρ6MDρ
6
MA

ð1þ cos2θADÞ

−
α

ρ3ADρ
3
DMρ

3
MA

ð1þ 3 cos θDM cos θMA cos θADÞ
�
;

ð5Þ
where we have defined a Hamaker-type coefficient C6 ¼
γDσAðℏωDÞð3c4=4ω4

DÞ and written the result in terms of the
angles and distances defined in Fig. 2. It is interesting to
note that there are certain choices of geometry for which the
rate can be slightly lower than in free space [18], but the
retardation effects discussed later are much more dramatic
so we postpone discussion of suppression until then.
An important special case can be extracted from the

general nonretarded rate [Eq. (5)]. This is the rate ΓL
NR for

a colinear arrangement, in which θMA ¼ θDM ¼ 0 and
θAD ¼ π. Then

ΓL
NR ¼ C6

ρ6AD

�
1þ 2

3
uNR þ u2NR

�
; ð6Þ

where uNR ¼ αρ3AD=ðρ3DMρ3MAÞ is a dimensionless number
indicating the strength of the interaction with the mediator,
which must be less than unity for our perturbative approach
to be applicable. For comparison with recent ab initio
work [9], we further assume that the mediator is halfway
between the donor and acceptor (ρDM ¼ ρMA ¼ ρAD=2),
giving a very simple result:

Γmid
NR ¼ C6

�
1

ρ6AD
þ 128α

ρ9AD
þ 12 288α2

ρ12AD

�
: ð7Þ

Equation (7) can now be compared to ab initio calcu-
lations. As in Ref. [9], we consider the case where the donor
and acceptor are both neon, and the mediator is helium.
Before making this comparison, however, we note that in
Ref. [9] excited configurations of the type NeþHe�Ne were
excluded from the calculations, meaning we should con-
sider only the static polarizability of the helium, given by
αHe ¼ 0.205 Å3 [19].

We also need a value for the two-body coefficient C6,
which can in principle be calculated from known values of
the free-space decay rate of the donor γD, the photoioni-
zation cross section of the acceptor σAðℏωDÞ and the
transition frequencies involved in the process ωD. Indeed
this can be done for the system of interest here with results
coinciding up to small numerical factors, but due to
complications of the type discussed in [5], we determine
the C6 from ab initio calculations. We do this by removing
the mediator from the system, and place the neon atoms far
enough apart that a 1=ρ6AD distance dependence is seen.
Shown in Fig. 3 is the comparison between the ICD

widths given in our new approach by Eq. (7), and the
calculated with the ab initio Fano-algebraic diagrammatic
construction (ADC)-Stieltjes method [6,20] (see Ref. [9]
for details of the calculations). As seen in the upper panel,
the results deviate significantly from the ab initio data if

FIG. 2. Definitions of geometrical quantities. Path 1 and Path 2
indicate the forward and backward parts of the closed trajectory
corresponding to the first order diagram (i) (cf. Fig. 1).

FIG. 3. ICD rate vs donor-acceptor distance, with the mediator
placed at the midpoint, C6 ¼ 3.6 eV and α ¼ αHe ¼ 0.205 Å3.
NeNe denotes the situation when the mediator is removed
entirely, NeHeNe in the upper plot represents the same data as
presented in Ref. [9], while the lower plot contains new high-
resolution data calculated for this Letter. The error bars on the
ab initio data are 3%, which comes from the standard deviation of
the decay widths calculated by Fano-ADC-Stieltjes method. In
the lower panel we have also included the rate if the NeHeNe
trimer is placed a ¼ 3 Å away from a perfectly reflecting surface.
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ρAD ≲ 7 Å. This is to be expected for at least two reasons.
First, the virtual photon method should fail when there is
significant wave function overlap, as discussed in detail in
Ref. [5]. Second, the superexchange enhancement seen
below 7 Å in Ref. [9] relies on intermediate states that
include charge transfer, where the helium gains an
electron to become He−, which are not included in our
virtual photon approach. The contribution of these charge
transfer intermediate states to three-body ICD decreases
exponentially with the neon-neon distance; we therefore
concentrate on distances larger than 7 Å. As shown in the
lower panel of Fig. 3, the ICD widths obtained with both
approaches agree well, supporting the general approach
taken here.
It should be mentioned that, even without the inclusion

of the charge transfer intermediate states, a clear enhance-
ment of the ICD rates is seen. In our approach, any
mediator dependence of the rate is to be understood as
coming from the mediator’s modification of the electro-
magnetic field that couples the donor and acceptor
species, rather than modification of atomic properties
themselves.
Finally, we emphasize the general applicability of our

approach with an additional example using an inhomog-
enous macroscopic background, namely a perfectly reflect-
ing plate. Substituting the nonretarded limit of the relevant
Green’s tensor (see Supplemental Material [17] and
Ref. [21]) into Eq. (1), one finds the rate suppression
shown in the lower panel of Fig. 3, which is consistent with
our earlier two-body work [11].
All the results shown so far are in the nonretarded regime,

as can be seen by noting that photon frequencies in Ref. [9]
are determined by the 2s−1 → 2p−1 transition ofNeþ, which
has a wavelength of 460 Å. Retardation sets in at the
transitionwavelength divided by 2π, which for this system is
an order of magnitude longer than all considered separations
of donor, mediator, and acceptor. Nevertheless, since the
method used here intrinsically includes retardation [11], we
can put the three-body ICDprocess into a broader context by
considering the consequences of using a donor with a higher
transition frequency, or, equivalently, large spacing between
the three atoms. Physical systems which may fulfill these
criteria include highly charged or hollow ions, as discussed
in detail in our previous work [11], and experimentally
observed in the context of Förster resonance energy transfer
in solids [22]. One of the most striking consequences of
retardation is that the ICD rate can oscillate in space if the
mediator is placed anywhere other than on the line joining
donor and acceptor. To see this, we use the Green’s tensor
in its retarded (far-field) limit as found in, e.g., Ref. [16] and
the Supplemental Material [17],

Gð0Þ
R ðr; r0;ωÞ ¼ eiωρ=c

4πρ
ðI − eρ ⊗ eρÞ; ð8Þ

in Eq. (1) via Eq. (3), giving a rateΓR. For a generalmediator
position, this is a very long and unwieldy expression, so
we only report an explicit formula for the rate ΓL

R in the
colinear arrangement

ΓL
R ¼ C2

ρ2AD

�
1þ u2R þ 2uR

�
cos ð2ωDρAM=cÞ if θAD ¼ 0

1 if θAD ¼ π

�
;

ð9Þ

where uR ¼ αρ2ADωD
2=ðρADρAMρDMc2Þ is a dimensionless

number describing the strength of the interaction, θAD is
defined in Fig. 2, and C2 ¼ γDσAðℏωDÞ=4. When the
mediator is outside the region between donor and acceptor,
spatial oscillations occur. This is shown in Fig. 4, where we
have plotted the rate [Eq. (9)] for fixed donor and acceptor
positions, and a mediator whose position is allowed to vary.
It is remarkable that, in the retarded (far-field) regime, the
ICD rate between donor and acceptor can be strongly
suppressed by placing an ICD-inactive atom outside the
region between them. Such suppression comes from proc-
esses where the mediator interacts once with the electro-
magnetic field [i.e., the oscillatory term in Eq. (9) is linear
in α]. This, coupled with the fact that no oscillations occur
if θAD ¼ π, demonstrates that the oscillations have their
origin in the phase accumulated along the example trajectory
indicated in Fig. 2, which is determined by the phase
difference between the (mediated) forward path 1 and the
(direct) backward path 2.
We briefly mention here that the results presented in

Fig. 4 can, in principle, be measured in a small cluster
composed of two heavy rare gas atoms and one (or few)
helium atom(s). Taking two heavy atoms allows us to reach
the retarded regime after the core ionization of one of these
atoms. Furthermore, helium is so light and inert that the
helium atom can be found nearly anywhere around other
rare gas atoms (see, e.g., Refs. [23,24]). Using a pump
probe setup as in Ref. [25] and a coincidence ion-momenta
spectrometer (see, e.g., Refs. [26,27]), it would be possible
to measure the decay rates as functions of the helium
position relative to the heavy atom pair.
Our theory can be extended to the many-mediator case

using a simple approach where either a sum over a set of
weakly interacting mediators is taken, or they are con-
sidered as a macroscopic background medium in the two-
body case. A full calculation is not straightforward since
both the general formula [Eq. (1)] and the Green’s tensor
[Eq. (3)] are perturbative in the polarizability of the atoms.
A more advanced approach is also possible, where one
mediator (e.g., the decaying pair’s nearest neighbor) is
considered microscopically, while the rest of the cluster is
taken into account as a macroscopic background like the
reflecting surface shown in Fig. 3. The latter has the
advantage that an analytically known Green’s tensor is
nonperturbative in α, already taking into account the
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microscopic interactions between the atoms making up the
environment to all orders in their polarizability. This
would circumvent the delicate perturbation theory men-
tioned above, while still describing one mediator micro-
scopically. Finally, the dynamical polarizability could even
be used in Eq. (3) in order to account for possible
resonances between the virtual photon energy and the
excited states of the mediator.
In this Letter we have presented a virtual photon

approximation for three-body ICD by taking advantage
of the recently introduced theoretical approach for calcu-
lation of the rate in arbitrary environments [11]. Our
approach is consistent with earlier ab initio work, and
goes beyond it by exploring the retarded regime and
including external macroscopic environments. In the con-
text of the former we make a surprising prediction that a
carefully placed mediator can cause almost complete
suppression of the rate in an experimentally accessible
situation, providing a powerful tool for the control and
manipulation of ICD rates.

R. B. and S. Y. B. thank Akbar Salam for fruitful dis-
cussions. R. B. acknowledges financial support by the
Alexander von Humboldt Foundation and S. Y. B. thanks
the Deutsche Forschungsgemeinschaft (Grant No. BU
1803/3-1476). R. B. and S. Y. B. both acknowledge support
from the Freiburg Institute for Advanced Studies (FRIAS).
P. K. and P. V. acknowledge financial support by the Czech
Science Foundation (Project GAČR No. 17-10866S). This
project has received funding from Agence Nationale de la
Recherche through the Program No. ANR-16-CE29-
0016-01.

[1] L. S. Cederbaum, J. Zobeley, and F. Tarantelli, Phys. Rev.
Lett. 79, 4778 (1997).

[2] K. Gokhberg, P. Kolorenč, A. I. Kuleff, and L. S.
Cederbaum, Nature (London) 505, 661 (2014).

[3] S. Marburger, O. Kugeler, U. Hergenhahn, and T. Möller,
Phys. Rev. Lett. 90, 203401 (2003).

[4] B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L.
Sanche, Science 287, 1658 (2000).

[5] V. Averbukh, I. B. Müller, and L. S. Cederbaum, Phys. Rev.
Lett. 93, 263002 (2004).

[6] V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123,
204107 (2005).

[7] E. Fasshauer, M. Förstel, S. Pallmann, M. Pernpointner, and
U. Hergenhahn, New J. Phys. 16, 103026 (2014).

[8] E. Fasshauer, New J. Phys. 18, 043028 (2016).
[9] T. Miteva, S. Kazandjian, P. Kolorenč, P. Votavová, and

N. Sisourat, Phys. Rev. Lett. 119, 083403 (2017).
[10] A. I. Kuleff, Chem. Phys. 482, 216 (2017).
[11] J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, Nat.

Commun. 9, 2934 (2018).
[12] G. J. Daniels and D. L. Andrews, J. Chem. Phys. 116, 6701

(2002).
[13] A. Salam, J. Chem. Phys. 136, 014509 (2012).
[14] S. Y. Buhmann and D.-G. Welsch, Appl. Phys. B 82, 189

(2006).
[15] J.W. Schmidt,R.M.Gavioso,E. F.May, andM. R.Moldover,

Phys. Rev. Lett. 98, 254504 (2007).
[16] S. Y. Buhmann, Dispersion Forces I—Macroscopic

Quantum Electrodynamics and Ground-State Casimir,
Casimir-Polder and van der Waals Forces, Springer Tracts
in Modern Physics, Vol. 247 (Springer, Berlin, 2012).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.153401 for a list
of the relevant Green’s tensors, as well as the general
expression which produces Eqs. (5) and (9) as special cases.

[18] For example, this is true for donor, acceptor, and mediator
at the corners of an equilateral triangle whose side length
is at least ð15α=11Þ1=3.

[19] R. D. Rohrmann, Mon. Not. R. Astron. Soc. 473, 457
(2018).

[20] P. Kolorenč and N. Sisourat, J. Chem. Phys. 143, 224310
(2015).

[21] R. Palacino, R. Passante, L. Rizzuto, P. Barcellona, and
S. Y. Buhmann, J. Phys. B At. Mol. Opt. Phys. 50, 154001
(2017).

FIG. 4. (Main plot) Three-body far-field ICD rate ΓL
R given by

Eq. (9) (dashed lines), normalized to the two-body rate given by
setting α to zero in that equation. The donor is at the origin, the
acceptor is placed three wavelengths λD away (ρAD ¼ 3λD), and
the polarizability volume is ðλD=4Þ3. Also shown as a solid line is
the full result at any distance (neither retarded nor nonretarded),
showing that the retarded limit [Eq. (9)] is valid further than
λD=ð2πÞ from donor or acceptor. However, the perturbative
approach used here becomes unreliable if uR > 1, which turns
out to be a more stringent condition than the retarded limit, as
shown. The inset shows a plot of the generalization of Eq. (9) to
two dimensions using the same parameters and placing the
acceptor on the z axis. There the regions bounded by white
dashed lines represent the region where our perturbation theory
becomes unreliable.

PHYSICAL REVIEW LETTERS 122, 153401 (2019)

153401-5

https://doi.org/10.1103/PhysRevLett.79.4778
https://doi.org/10.1103/PhysRevLett.79.4778
https://doi.org/10.1038/nature12936
https://doi.org/10.1103/PhysRevLett.90.203401
https://doi.org/10.1126/science.287.5458.1658
https://doi.org/10.1103/PhysRevLett.93.263002
https://doi.org/10.1103/PhysRevLett.93.263002
https://doi.org/10.1063/1.2126976
https://doi.org/10.1063/1.2126976
https://doi.org/10.1088/1367-2630/16/10/103026
https://doi.org/10.1088/1367-2630/18/4/043028
https://doi.org/10.1103/PhysRevLett.119.083403
https://doi.org/10.1016/j.chemphys.2016.09.007
https://doi.org/10.1038/s41467-018-05091-x
https://doi.org/10.1038/s41467-018-05091-x
https://doi.org/10.1063/1.1461819
https://doi.org/10.1063/1.1461819
https://doi.org/10.1063/1.3673779
https://doi.org/10.1007/s00340-005-2055-3
https://doi.org/10.1007/s00340-005-2055-3
https://doi.org/10.1103/PhysRevLett.98.254504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.153401
https://doi.org/10.1093/mnras/stx2440
https://doi.org/10.1093/mnras/stx2440
https://doi.org/10.1063/1.4936897
https://doi.org/10.1063/1.4936897
https://doi.org/10.1088/1361-6455/aa75f4
https://doi.org/10.1088/1361-6455/aa75f4
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