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We show that if global lepton number symmetry is spontaneously broken in a postinflation epoch, then it
can lead to the formation of cosmological domain walls. This happens in the well-known “Majoron
paradigm” for neutrino mass generation. We propose some realistic examples that allow spontaneous
lepton number breaking to be safe from such domain walls.
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Introduction.—Topological defects such as monopoles,
strings, and domain walls [1,2] can arise in many gauge
theories including grand unification. In addition, there can
appear (hybrid) configurations such as monopoles con-
nected via strings or walls bounded by strings. Two well-
known examples of the latter arise in SOð10Þ [3] and axion
models [4]. Stable or sufficiently long lived domain walls,
associated with symmetry breaking scales comparable to or
larger than in the standard model (SM) will sooner or later
become the dominant energy component of the early
Universe. As a consequence, such domain walls pose a
serious challenge in cosmology and should therefore be
avoided in realistic model building (some possibilities were
recently discussed in Ref. [5]).
Domain walls are well known to appear associated with

the spontaneous breaking of the Peccei-Quinn symmetry [6].
Herewe note that the “weak”SUð2ÞLmay be associatedwith
the presence of domainwalls. Thismay happen in the context
of spontaneous violation of lepton number symmetry.
Indeed, such models in which the lepton number is violated
by a gauge singlet Higgs vacuum expectation value (vev)
[7,8] provides an attractiveway to generateMajoranamasses
for neutrinos [9], as needed to account for current neutrino
data [10]. In addition, it implies the existence of a physical
Nambu-Goldstone boson, called Majoron. The latter may
pick up a mass from explicit symmetry breaking by gravity
effects [11–14]. Under such circumstances the Majoron
may provide a good dark matter candidate [15–20] (since

gravitational effects are not calculable in a reliable way, here
we prefer not to invoke their existence).
The origin of the domain wall problem in this case stems

from the existence of an unbroken residual subgroup Z2

arising from the spontaneous lepton number violation,
which clashes with the unbroken Z3 from the nonpertur-
bative instanton effects associated with the weak SUð2ÞL.
This implies that the domain wall problem associated with
the weak SUð2ÞL exists in a broad class of Majoron models
of neutrino mass generation. A standard mechanism for
evading the domain wall problem is to invoke a suitable
inflationary phase during their formation such that the walls
are inflated away. In this Letter, we propose a more direct
resolution of the domain wall problem that does not rely on
inflation. We present various possible mechanisms for
having realistic Majoron models, with and without super-
symmetry, which allow spontaneous lepton number viola-
tion to occur without encountering a domain wall problem.
Global lepton number and domain wall problem.—Apart

from the gauge symmetries, it is well know that in the SM
there are two “accidental” global Uð1Þ symmetries, namely
the baryon number Uð1ÞB and the lepton number Uð1ÞL
symmetries. Although, accidental within SM, these sym-
metries nonetheless play a very important role. The baryon
number symmetry Uð1ÞB is responsible for the stability of
the proton and the lepton number symmetry plays a key
role in neutrino mass generation and in determining the
Dirac or Majorana nature of neutrinos. The lepton number
in the SM is conserved at the Lagrangian level to all orders
in perturbation theory. However, the lepton number is an
anomalous symmetry; hence it is explicitly broken by
nonperturbative effects [21]. (Note that both baryon and
lepton numbers are anomalous symmetries; however a
particular combination Uð1ÞB−L is anomaly free. The other
orthogonal combination Uð1ÞBþL remains anomalous and
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hence it is explicitly broken by nonperturbative effects
[21]). In particular, owing to the ½SUð2ÞL�2 ×Uð1ÞL
anomaly, the nonperturbative instantons will explicitly
break the initial lepton number symmetry Uð1ÞL down
to the discrete ZN subgroup, with

N ¼
X
R

NðRÞ × LðRÞ × TðRÞ ¼ 3 × 1 × 1 ¼ 3; ð1Þ

where NðRÞ is the number of copies of a given fermion in
representation R, LðRÞ is the lepton number of the fermion
and TðRÞ is the SUð2ÞL Dynkin multiplicity index. For the
SUð2ÞL group, the indexTðRÞ for the lowest representations,
singlets, doublets, and triplets are respectively, Tð1Þ ¼ 0,
Tð2Þ ¼ 1, and Tð3Þ ¼ 4.
It is clear, from Eq. (1), that the nonperturbative instantons

associatedwith theweakSUð2ÞL breakUð1ÞL → Z3. Notice
also that the threefold family replication in the SM plays a
crucial role in dictating the breaking Uð1ÞL → Z3. The
residual Z3 symmetry is exact at the classical and quantum
level, implying the existence of degenerate vacua in our
theory. Notice also that, in contrast to the case of axions,
where the anomaly is related to the Uð1Þ Peccei-Quinn
charge assignments, in the case of the lepton number there is
an anomaly intrinsically associated with the chiral nature of
weak SUð2ÞL.
Although the tunneling rate from one vacuum to another

due to instantons is extremely small at zero temperature (this
rate is proportional to expð−2π=αWÞ and thus unimportant
for our discussion [22]), sphaleron induced transitions
between the vacua become relevant at higher temperatures
[23]. Moreover, it is argued that frequent transitions between
the vacua occur even above the critical temperatureTc for the
electroweak transition (our argument below involves only
temperatures between around 200 GeV and Tc, where the
sphalerons operate, and the transitions from one vacuum to
another are very frequent [24]). Thus, the B and L violating
reactions at high temperatures are fast, so that the Uð1ÞL,
Uð1ÞB are explicitly broken by nonperturbative effects down
to discrete Z3 symmetries.
If the SM is the final gauge theory, the nonperturbative

breaking of the lepton number won’t be a serious issue.
However, a dynamical understanding of the smallness of
neutrinos mass often requires that lepton number is further
broken down either explicitly or spontaneously by the new
physics associated to neutrino mass generation. A popular
and well studied scenario is the case of spontaneous
breaking of lepton number [7,8]. This is specially attractive
scenario that not only leads to Majorana masses, but also
implies the existence of a Nambu-Goldstone boson, called
Majoron. It breaks the global Uð1ÞL lepton number
symmetry down to a Z2 subgroup through the vev of a
SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY singlet scalar carrying two
units of lepton number. However, we notice the mismatch
between the unbroken residual subgroup Z2 arising from
the spontaneous lepton number violation and the subgroup

Z3 that is left unbroken by the nonperturbative effects.
Owing to this mismatch the domain walls will appear.
For temperatures between 200 GeV and the electroweak

critical temperature Tc the tunneling rate between the vacua
connected by the Z3 subgroup, which remains explicitly
unbroken by instantons, is very frequent. The barrier
separating different vacua, related by the Z3, has static
energy EsphðTÞ, the sphaleron mass, and the width is of
order m−1

W . This is the size of the “restricted instanton” that
minimizes the height of the barrier and corresponds to the
sphaleron (see Ref. [25] and references therein). Since the
wall thickness is much smaller than the horizon size at these
temperatures, the walls are expected to be present. The
mass per unit surface is ≃v2mW , where v is the order
parameter, i.e., the vev that breaks Uð1ÞL. Even one such
wall per horizon would provide an energy density
≃3v2mW=4t (t is the cosmic time). This exceeds the radiation
energy density ρr ¼ ðπ2=30Þg1=2� T4 (g� ¼ 106.75 is the
effective number of degrees of freedom) at a cosmic temper-
ature T > 200 GeV if the vev (v) is larger than about
ð8π=3Þ1=2ðg�=10Þ1=4ðmWmPÞ1=2 ≃ 8.2 × 1010 GeV (mP ¼
2.44 × 1018 GeV is the reduced Planck mass). Such values
for v are very reasonable if they are to generate, say, the right
handed neutrino masses within a type-I seesaw mechanism
[27–31]. Right after the wall domination, the Schwarzschild
radius corresponding to the mass within each horizon
becomes bigger than the horizon itself and the system
becomes unstable and collapses into black holes, leading
to a cosmological catastrophe [26]. Therefore, unless a
suitable remedy is provided, we expect the standard
high-scale type-I seesaw Majoron model of neutrino mass
generation to be cosmologically inconsistent due to the
existence of such domain walls. Note however that low-
scale scenarios, such as the inverse seesawMajoron schemes
[32–35] constitute a potentialwayout. This is because, in that
case, the lepton number violating order parameter can lie
much below the electroweak scale, where sphaleron effects
are negligible and Uð1ÞL can be regarded as an exact
continuous symmetry.
The above spontaneous breaking of Uð1ÞL → Z2 by the

vev of a field carrying two units of the lepton number can be
connected to neutrinomasses in full generality at the operator
level. Consider the Uð1ÞL invariant effective operator

1

Λ2
L̄cHHσL. ð2Þ

In Eq. (2) the field L is the SUð2ÞL lepton doublet, H is the
Higgs doublet and σ is a SM gauge singlet scalar field
charged under the Uð1ÞL symmetry. Also, Λ is the cutoff
scale for the effective operator above which the full ultra-
violet complete theory should be specified. This operator is
Uð1ÞL invariant if σ has charge −2 under the Uð1ÞL
symmetry. After σ develops a nonzero vev, hσi, Uð1ÞL is
broken down to Z2 and the expression in Eq. (2) reduces to
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the famousWeinberg operator [36]. Again theCP odd part of
σ will be a Nambu-Goldstone boson, the Majoron. Here CP
denotes the combined action of charge conjugation (C) and
parity (P).
Solutions to the domain wall problem.—In this section

we consider alternative solutions to the domain wall
problem that arises from the spontaneous breaking of
Uð1ÞL by the vev of a lepton-number-carrying scalar field.
We focus attention on Majoron-type models characterized
by the spontaneous breaking of lepton number at a high
scale. The examples in the following subsections involve
only the SM gauge structure. On the other hand the model
considered in the family symmetry subsection requires an
extension of the SM with a gauge family symmetry.
Majoron with singlet-triplet seesaw: The simplest sol-

ution of the domain wall problem in the Majoron model
uses only the usual SM gauge framework. It requires, in
addition to the SM fields, the following new ones with
their SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY quantum numbers indi-
cated in parenthesis and subscripts denoting their charges
under Uð1ÞL:

νR¼ð1;1;0Þþ1; ΣR¼ð1;3;0Þþ1; σ¼ð1;1;0Þ−2; ð3Þ

where the first field (νR) is a gauge singlet right-handed
neutrino present in seesaw schemes [27–31] (with arbitrary
multiplicity, which we take equal to one for simplicity,
given that this is sufficient to account for the current
neutrino oscillation data). The second field (ΣR) is a
SUð2ÞL triplet right-handed fermion and, the last field is
the complex scalar whose vev hσi is responsible for the
spontaneous lepton number breaking. The Lagrangian will
now contain the following new couplings:

Lnew ¼ yDi
νR L̄

iH̃νR þ yDi
Σ L̄iH̃ΣR þ yMΣ σΣ̄c

RΣR þ yMνRσν̄
c
RνR;

ð4Þ

where H̃ ¼ iτ2H� with τ2 denoting the second Pauli matrix.
After electroweak symmetry breaking the Higgs field

will get a vev hHi ¼ v and we will have a seesaw-like
mechanism for light neutrinos with mass matrix mν ¼
MT

DM
−1
R MD where

MD ¼
�
vyD1

ν vyD2
ν vyD3

ν

vyD1
Σ vyD2

Σ vyD3
Σ

�
;

MR ¼
�
yMνRhσi 0

0 yMΣ hσi

�
: ð5Þ

The resulting matrix, mν, has rank 2, leaving one light
neutrino massless. Note that, since ΣR has nontrivial
SUð2ÞL quantum numbers, it produces a significant change
in the ½SUð2ÞL�2 ×Uð1ÞL anomaly, which is now given by

N ¼
X
R

NðRÞ × LðRÞ × TðRÞ

¼ 3 × 1 × 1 − 1 × 1 × 4 ¼ −1. ð6Þ

By computing the anomaly factor one sees that the domain
wall problem is absent in this extension. Therefore, the
heavy triplet ΣR acts as an auxiliary Majorana field to
address the domain wall issue. Moreover, it also acts as a
heavy messenger for small neutrino mass generation
through the seesaw mechanism.
Majoron seesaw within supersymmetry: The simple

solution illustrated in the previous section can be gener-
alized within a supersymmetric context. We present here a
simple supersymmetric model that also addresses the
domain wall problem. The particle content and charges
of the superfields are as shown in Table I.
In addition to the usual minimal supersymmetric stan-

dard model (MSSM) superfields and the right-handed
neutrinos (νc), one adds the SUð2ÞL triplet superfields T,
T̄ and the gauge singlet superfields S, ϕ, ϕ̄ with charges as
listed in Table I. The superpotential of our model is given by

W¼ κSðϕ̄ϕ−M2ÞþyuijHuQiucj þydijHdQidcj

þyνijHuLiν
c
j þyeijHdLiecj þλSHuHdþyTi TLiHd

þy0Tϕ̄TT̄þyϕij
ϕ̄2νci ν

c
j

mP
; ð7Þ

where i, j ¼ 1, 2, 3 are generation indices.
Owing to the presence of the triplet superfield T, the

½SUð2ÞL�2 ×Uð1ÞL anomaly is again found to be

N ¼
X
R

NðRÞ × LðRÞ × TðRÞ

¼ 3 × 1 × 1 − 1 × 1 × 4 ¼ −1: ð8Þ

TABLE I. Particle content and charges. Uð1ÞR is an R sym-
metry under which the superpotential W has an R charge of
2 units.

Superfields SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞB Uð1ÞL Uð1ÞR
Qi 3 2 1=6 1=3 0 1
uci 3̄ 1 −2=3 −1=3 0 1
dci 3̄ 1 1=3 −1=3 0 1
Li 1 2 −1=2 0 1 1
eci 1 1 1 0 −1 1
νci 1 1 0 0 −1 1
T 1 3 1 0 −1 1
T̄ 1 3 −1 0 0 1
Hu 1 2 1=2 0 0 0
Hd 1 2 −1=2 0 0 0
S 1 1 0 0 0 2
ϕ 1 1 0 0 −1 0
ϕ̄ 1 1 0 0 1 0
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Thus, unlike the usual Majoron models, here the instanton
effects will break Uð1ÞL → Z1, avoiding the domain wall
problem. As in the previous case, this holds irrespective of
the number of right-handed neutrino superfields, the
minimal realistic model has just one.
Notice that this solution differs from the standard seesaw

mechanism in that the Majoron coming from the imaginary
parts of the ϕ; ϕ̄ scalars carry one unit of lepton number,
instead of two. Moreover, our model has other attractive
features which make it quite appealing. Apart from solving
the domain wall problem, it automatically addresses the so-
called μ problem of the MSSM [37]. In addition we also
have a R symmetry that contains the usual R parity of
the MSSM, forbidding all the potentially dangerous terms
in the superpotential [Eq. (7)]. Finally, right-handed neu-
trino masses arise through the nonrenormalizable term
ϕ̄2νcνc=mP, where we take the high scale as mP.
SUð3Þlep family symmetry for leptons: Consider now a

SUð3Þlep gauge extension of the SM scenario. Let quarks be
singlets under this group, while leptons transform under it
in a vector-like way (note that this differs from the usual
SUð3Þlep family symmetry used to address the observed
fermion mass hierarchy [38,39]),

L ¼ ð1; 2;−1=2; 3Þ;
eR ¼ ð1; 1;−1; 3Þ;
νR ¼ ð1; 1; 0; 3Þ; ð9Þ

with the first three entries in parenthesis indicating the
standard model charges and the last entry the SUð3Þlep
representation. This extension has several consequences.
First of all, right-handed neutrinos cannot have a bare mass
term. Their masses must be generated through the sponta-
neous violation of Uð1ÞL. This is related with the breaking
of SUð3Þlep and is achieved by the vev of a flavor sextet
scalar field σ with lepton number −2 via the coupling

σν̄cRνR: ð10Þ

The second and more important implication is that this
extension automatically solves the domain wall problem.
The reason is that the center of SUð3Þlep, which is Z3,
exactly coincides with the discrete Z3 subgroup of Uð1ÞL
left unbroken by the anomaly. Since this accidental sub-
group can be embedded in the continuous gauge group
SUð3Þlep, the degenerate minima are now connected by a
gauge transformation, so that any difference among them
becomes unphysical. In this way, the domain wall problem
is solved. This is a Majoron variant of the domain wall
axion solution given in the context of Grand Unified
Theory (GUT) in Ref. [40,41].
Diracon solution: Another possible solution to the

domain wall problem is obtained by enforcing that
the spontaneous lepton number breaking is such that

Uð1ÞL → Z3 instead of Z2. In this case, there is no
mismatch between the residual subgroup preserved by
the anomaly and that preserved by the spontaneous lepton
number violation due to hσi, so the domain wall problem
will be automatically solved. Clearly, the Uð1ÞL → Z3

spontaneous breaking cannot be accomplished within the
framework of the canonical Majoron model. In fact, if Z3 is
the residual unbroken symmetry then neutrinos cannot be
Majorana particles. However, we note that for Dirac
neutrinos the Uð1ÞL → Z3 breaking is viable, and will
lead to a solution of the domain wall problem within a
variant of the “Diracon models” [42,43].
To see this Diracon solution, the first thing is to realize

that the lepton number of right-handed neutrinos νR need
not be the same as that of the left-handed neutrinos [44,45].
In fact, a nonconventional lepton number assignment of
ð4; 4;−5Þ for the three generations of νi;R; i ¼ 1, 2, 3,
proposed in Refs. [46,47] is equally acceptable.
If the νi;R transform with such nonconventional charges

under Uð1ÞL, then one cannot write down the tree level
Dirac term L̄ H̃ νi;R nor the Majoron Weinberg operator of
Eq. (2). However, one can still write down the following
Uð1ÞL invariant operators

1

Λ
L̄ H̃ χνi;R;

1

Λ2
L̄ H̃ χ�χ�ν3;R; ð11Þ

where νi;R, i ¼ 1, 2 are the two right-handed neutrinos
carrying charge 4 units under Uð1ÞL, and ν3;R has Uð1ÞL
charge of −5. Also, the field χ has charge of −3 under
Uð1ÞL. It can be easily seen that the vev of the χ field will
spontaneously break Uð1ÞL → Z3 with the resulting neu-
trinos being Dirac in nature. Furthermore, the CP odd part
of χ will be a Nambu-Goldstone boson, which we call
Diracon, and is associated with the Dirac mass generation
of the neutrinos. Now, since the Uð1ÞL in this case is
spontaneously broken to the same residual subgroup Z3 as
that preserved by the nonperturbative SUð2ÞL instantons,
there is no mismatch and hence the problem of domain
walls is automatically avoided.
Conclusions.—We have shown that if the global lepton

number symmetry is broken spontaneously in a post infla-
tionary epoch, then it can lead to the formation of cosmo-
logical domain walls. Since the presence of these domain
walls may spoil the standard picture of cosmological
evolution, we have studied the conditions to prevent their
formation as a result of spontaneous symmetry breaking.We
have shown that the simplest seesaw Majoron models of
neutrino masses have, in principle, a domain wall problem
associatedwith the chiralSUð2ÞL gaugegroupdescribing the
weak interaction. We have also provided some explicit and
realistic solutions that allow a safe spontaneous breaking of
lepton number, free of domain walls. Some of these models
involve new particles that could potentially lead to phenom-
enological implications.
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