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We demonstrate ballistic spin transport of an integrable unitary quantum circuit, which can be
understood either as a paradigm of an integrable periodically driven (Floquet) spin chain, or as a Trotterized
anisotropic (XXZ) Heisenberg spin-1=2 model. We construct an analytic family of quasilocal conservation
laws that break the spin-reversal symmetry and compute a lower bound on the spin Drude weight, which is
found to be a fractal function of the anisotropy parameter. Extensive numerical simulations of spin transport
suggest that this fractal lower bound is in fact tight.
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Introduction.—Understanding transport in various out-
of-equilibrium setups, in particular, in low dimensions, is
one of the main challenges of theoretical condensed matter
physics [1]. Experimental evidence corroborates the seem-
ingly controversial proposal [2,3] that integrable systems
generically exhibit ballistic transport even at high temper-
atures [4–6]. This proposal has received rigorous justifi-
cation in terms of the existence of an extensive number of
quasilocal conserved quantities [7–12] which form a basis
for the hydrodynamic theory of interacting integrable
systems [13–15].
Recently, periodically driven (Floquet) spin chains with

local interactions have attracted considerable attention.
This was in particular due to the possibility of exhibiting
generalized thermalization towards nonequilibrium steady
states [16] and distinct dynamical phases with respect to
the spontaneous breaking of time-translation invariance
[17,18]. Still, the possibility of strictly ballistic transport in
interacting quantum integrable Floquet systems has never
been explored (see [19,20] for a classical lattice setting),
even though a peculiar robustness of transport to integrability
breaking was observed a while ago [21,22] (also [23]).
For concreteness, let us consider spin transport. Without

resorting to the spectroscopic approach [24], which is
harder to justify in Floquet systems, ballistic transport
can be defined as a linear growth of the spin current in time,
after the system has been prepared in an initial state
supporting a small gradient of magnetization. This can
be formulated in terms of a nonzero Drude weight,

D ¼ lim
t→∞

lim
N→∞

lim
μ→0

hJðtÞiμ
2Ntμ

; ð1Þ

where J ¼ P
n jn is the extensive spin current operator on a

spin chain of length N and JðtÞ its time dependence. h•iμ
denotes the average in the initial state with a small gradient
of magnetization μ, say ρμ ∼ expðμPn nσ

z
nÞ, where σzn is a

local spin variable. A formula similar to (1) holds even if

the system is initially prepared in two equilibrated halves at
different magnetizations μL and μR with μ ∼ ðμL − μRÞ=N
representing the effective gradient [25–27]. This partitioned
initial state is easier to simulate using state-of-the-art tensor
network simulations.
Expanding to the first order in μ, the Drude weight can be

expressed solely in terms of equilibrium autocorrelation
functions using the Kubo formula; see Appendix A of the
Supplemental material (SM) [28]. This can in turn be
bounded from below by means of the Mazur inequality
[3,29,30] (see [7] for a rigorous derivation in extended
systems),

D ¼ lim
t→∞

lim
N→∞

1

2N
1

t

Xt

τ¼1

hJJðτÞi

≥ lim
N→∞

1

2N

X
k

jhJ;Qkij2
hQk;Qki

: ð2Þ

HereQk are conserved quantities orthogonal with respect to
the inner product hA;Bi ¼ tr½A†B�=2N , assuming that the
reference equilibrium state is the maximum entropy state
ρμ¼0 ¼ 2−N1 and the local Hilbert space dimension is 2.
In order for the bound to be finite the conserved quantities
should be linearly extensive or quasilocal, hQk;Qki ∝ N,
and should have a finite overlap with the spin current,
hJ;Qki ≠ 0. For the latter to hold, Qk must not be
symmetric, PQkP ≠ Qk, with respect to the spin-reversal
operator P, which flips the spin current PJP ¼ −J. In the
easy-plane (gapless) regime of the Heisenberg XXZ model,
for example, the integrals of motion with all of the required
properties have been shown to exist [8–11].
In the present letter, we aim to rigorously establish a

regime of ballistic transport in a Floquet driven integrable
model related to the Trotterized XXZ spin-1=2 chain.
We introduce the dynamical protocol as a local quantum
circuit, establish its connection with the six-vertex R-matrix
and integrability structure of the XXZ model, and define
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the spin currents and continuity equations arising from the
global Uð1Þ symmetry of the model. Despite its driven
nature, we construct a set of quasilocal conservation laws
that break the spin-reversal symmetry. We then show how
to evaluate the optimized Mazur lower bound on the spin
Drude weight. Extensive numerical simulations using the
time-evolving block decimation (TEBD) algorithm
strongly suggest that this bound, which is a fractal function
of parameters, is in fact saturated, similarly as in the
continuous-time case [27,31].
The model.—Consider a spin-1=2 chain with N ∈ 2Z

sites and periodic boundary conditions. The local physical
space on each site is denoted by Vp ≡ C2. We are interested
in a discrete-time Liouville–von Neumann equation for
a density matrix ρtþ1 ¼ UρtU†. The propagator U ¼
UoddUeven acts in two steps

Uodd ¼
YN=2

n¼1

U2n;2nþ1; Ueven ¼
YN=2

n¼1

U2n−1;2n; ð3Þ

where

Un;nþ1 ¼ e−iJ ðσxnσxnþ1
þσynσ

y
nþ1

Þ−iJ 0ðσznσznþ1
−1Þ ð4Þ

is a unitary gate acting on two neighboring sites labeled
with n and nþ 1; see Fig. 1. Here σα (α ¼ x, y, z) are Pauli
matrices. By considering infinitesimally small couplings J
and J 0 and an infinite number of time steps we recover the
continuous-time dynamics of the XXZ model, according to
the Trotter-Suzuki formula.
The local two-site unitary gate can be rewritten as

Un;nþ1 ¼ Řn;nþ1ðλÞ, where

ŘðλÞ ¼

0
BBBBB@

1 0 0 0

0 sin η
sinðλþηÞ

sin λ
sinðλþηÞ 0

0 sin λ
sinðλþηÞ

sin η
sinðλþηÞ 0

0 0 0 1

1
CCCCCA

ð5Þ

denotes the braid form of the R-matrix of the XXZ model.
The new parameters η and λ can be implicitly expressed as
unique functions of J and J 0 through the following pair
of relations:

e2iðJ�J 0Þ ¼ sin η − sin λ
sinðη� λÞ : ð6Þ

The continuous-time limit is recovered as an expansion
in small λ, which givesUn;nþ1 ¼ 1þ λhn;nþ1 þOðλ2Þwith
the local Hamiltonian density

hn;nþ1¼
1

2sinη
ðσxnσxnþ1þσynσ

y
nþ1þΔðσznσznþ1−1ÞÞ; ð7Þ

with Δ ¼ cos η being the anisotropy parameter. Clearly,
real η and imaginary λ correspond to the gapless or easy-
plane regime, shown in Fig. 2, whereas imaginary η and
real λ correspond to the gapped or easy-axis regime.
In the gapless regime of the continuous-time limit

(jΔj < 1) the Drude weight has rigorously been shown
to be nonzero for a dense set of anisotropies parametrized
by η ¼ lπ=m, where l andm are coprime integers [9,10]. In
this letter we extend this discussion for the same set of
anisotropies to a discrete time, i.e., to all imaginary λ. This
covers the ballistic regime in the phase diagram of our
model, shown in red in Fig. 3, which is determined by
adapting the numerical method of Ref. [32]. We stress that
we observe ballistic transport for any ratio J 0=J , even
for jJ 0j > jJ j, unlike in the continuous-time case. Note
also that the other two transport regimes can be clearly

FIG. 1. Schematics of the time evolution. The red gates
represent Ueven and the blue ones Uodd. The direction of the
time is upwards. The schematic shows two full time steps in the
bulk of the system.

FIG. 2. The colored area corresponds to real η and imaginary λ.
The blue and yellow lines are constant λ and constant η
contours, respectively. The continuous-time limit corresponds
to J , J 0 → 0. Note, η ¼ π=2 corresponds to the free model
(J 0 ¼ 0). In the limit λ → ∞ (J → π=4) the local propagator (4)
reduces to a SWAPlike gate with some J 0-dependent phase.
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established numerically—the superdiffusive in yellow and
the diffusive in blue.
Spin currents.—Because of the Uð1Þ symmetry of the

propagator (5) the total magnetization M ¼ P
N
n¼1 σ

z
n is a

conserved quantity. As a result of the discrete time
propagation we identify two continuity equations, sepa-
rately for odd and even sites,

U†σz2nþ1U − σz2nþ1 ¼ −j2nþ2 þ j02nþ1;

U†σz2nU − σz2n ¼ −j02nþ1 þ j2n: ð8Þ

Through them we can define two local current densities, the
even current j2n and the odd, j02nþ1. The even one is

j2n ¼
4 sin λ sin η

cos 2η − cos 2λ
ðσþ2n−1σ−2n − σ−2n−1σ

þ
2nÞ

þ 2ðsin λÞ2
cos 2η − cos 2λ

ðσz2n−1 − σz2nÞ; ð9Þ

while the odd current can be computed as j02nþ1 ¼
U†
evenj2nþ1Ueven and operates on four adjacent sites. In

the continuous-time limit both local currents reduce to

jn ¼ j0n ¼ −
2λ

sin η
ðσþn−1σ−n − σ−n−1σ

þ
n Þ þOðλ2Þ; ð10Þ

with theprefactor ðsin ηÞ−1 coming from theHamiltonian (7).
The total extensive spin current is now defined as

J ¼ PN=2
n¼1ðj2n þ j02nþ1Þ. It is clearly antisymmetric under

spin reversal P ¼ Q
N
n¼1 σ

x
n, i.e., PJP ¼ −J. We now

proceed to construct the relevant conservation laws for
all imaginary λ and for a dense set of commensurate values
of the anisotropy parameter η ¼ lπ=m.
Quasilocal integrals of motion.—The construction of

antisymmetric conservation laws is similar as in the
continuous-time limit [10]. However, due to the two-step
staggered propagation, they are now generated by the
staggered transfer operator

Tðφ; sÞ ¼ tra

�YN
n¼1

Ln;a

�
φ − ð−1Þn λ

2
; s

��
: ð11Þ

Here, Ln;aðφ; sÞ denotes the Lax operator acting on the nth
physical space Vp in the string ⨂N

n¼1Vp as a 2 × 2 matrix

Lðφ; sÞ ¼ 1

sinφ

�
sinðφþ ηSz

sÞ sinðηÞS−
s

sinðηÞSþ
s sinðφ − ηSz

sÞ

�
ð12Þ

whose elements are themselves matrices in the auxiliary
space Va. For η ¼ lπ=m the latter is an m-dimensional
complex spin-s representation of the quantum group
Uqðsl2Þ (q ¼ eiη) traced out in the final expression (11).
Its generators have an explicit form reminiscent of the
angular momentum generators

Sz
s ¼

Xm−1

k¼0

ðs − kÞjkihkj;

Sþ
s ¼

Xm−2

k¼0

sinðkþ 1Þη
sin η

jkihkþ 1j;

S−
s ¼

Xm−2

k¼0

sinð2s − kÞη
sin η

jkþ 1ihkj: ð13Þ

Together with ŘðλÞ given in (5), the Lax operator (12)
satisfies the Yang-Baxter equation, which implies
½Tðφ; sÞ; U� ¼ 0 and ½Tðφ; sÞ; Tðφ0; sÞ� ¼ 0 (see
Appendixes B and C of the SM [28]).
For λ ¼ 0 the spin-reversal asymmetric conservation

laws of the XXZ spin-1=2 chain were previously produced
[9–11] as

ZðφÞ ¼ 1

2η sin η
∂sTðφ; sÞjs¼0; ð14Þ

and shown to be linearly extensive (quasilocal) inside an
analyticity strip jReφ − π=2j < π=ð2mÞ. Here we simply
show that this expression can be extended to arbitrary
values of parameter λ if the staggered form (11) of the
transfer matrix is used. Since λ is purely imaginary, the
region of quasilocality remains the same. The detailed
construction of these conservation laws for finite λ is
presented in Appendix D of the SM [28].

FIG. 3. A schematic phase diagram of the model based on
TEBD simulations. The three circles mark the values of J and J 0
used in the right plot, which in turn depicts the time dependence
of the exponent α, defined through the transport of magnetization
between two half-chains [32] αðtÞ ¼ ðd=d log tÞ log ðPt

τ¼0

hjN=2þ1ðτÞiÞ. We can recognize ballistic, superdiffusive and
diffusive regimes (red, yellow, and blue, respectively). Here
we have used bond dimension 64 on a chain of length N ¼ 3600.
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In order to maximize the Mazur lower bound (2) for the
spin Drude weight we need to minimize the norm of the
conservation laws Qk ∼ ZðφÞ without reducing the overlap
with the spin current hJ;Qki. Because of the asymmetry of
the current operator PJP ¼ −J, only the spin-reversal
antisymmetric component Z−ðφÞ ¼ 1

2
½ZðφÞ − PZðφÞP�

contributes to the lower bound. Furthermore, we can
subtract a term proportional to the total magnetization,
Z−⊥ðφÞ ¼ Z−ðφÞ − ð1=NÞhM;ZðφÞiM, since the latter is
orthogonal to the spin current; see Appendix E of the

SM [28]. The overlap between Z−⊥ðφÞ and the current is
now given by

jðφÞ ¼ lim
N→∞

1

N
hZðφ̄Þ; Ji ¼ sin λ

ðcos λ − cos 2φÞ sin η : ð15Þ

The quasilocality of Z−⊥ðφÞ follows from the N-independ-
ence of Kðφ;φ0Þ≡ limN→∞ð1=NÞhZ−⊥ðφ̄Þ; Z−⊥ðφ0Þi, proven
in Appendix F of the SM [28]. There we also conjecture the
full, explicit form of Kðφ;φ0Þ to be

Kðφ;φ0Þ ¼ ðcosðφ − φ0 þ λÞ þ cosðφ − φ0 − λÞ − 2 cosðφþ φ0ÞÞ sin½ðm − 1Þðφþ φ0Þ� þ ðsin λÞ2 sin½mðφþ φ0Þ�
4ðsin ηÞ2ðcos 2φ − cos λÞðcos λ − cos 2φ0Þ sin½mðφþ φ0Þ� : ð16Þ

Expressions (15) for jðφÞ and (16) for Kðφ;φ0Þ are the
essential ingredients for the lower bound on the Drude
weight.
Mazur bound.—We now attempt to bound the spin

Drude weight by means of the Mazur inequality as
elaborated on in Ref. [10]. It can be rewritten in an integral
form,

D ≥ DMazur ¼
1

2
Re

Z
d2φjðφ̄ÞfðφÞ; ð17Þ

where fðφÞ solves the following Fredholm equation:

Z
d2φ0Kðφ;φ0Þfðφ0Þ ¼ jðφÞ: ð18Þ

The integrals are formally taken over the area of quasilo-
cality jReφ − π=2j < π=ð2mÞ. However, due to holomor-
phicity, a single line of integration centered at Reφ ¼ π=2 is
sufficient, which makes for an efficient quasiexact numeri-
cal procedure of computing DMazur. The full Mazur lower
bound has a fractal dependence on η and a continuous
dependence on jλj. It has been calculated numerically and
compared to TEBD [33,34] simulations—see Appendix H
of the SM [28]. The dependence on η is shown in Fig. 4, and
the dependence on jλj in Fig. 5.
In Fig. 4 we have rescaled the Drude weight and the

lower bound by a factor of ðsin ηÞ2 [see Eq. (7)]. This
allows us to make a comparison with the established
continuous-time result [10]

D0
Mazur ¼

�
sin η

sinðπ=mÞ
�

2
�
1 −

m
2π

sinð2π=mÞ
�
; ð19Þ

found by expanding ðsin ηÞ2DMazur ¼ λ2D0
Mazur þOðλ3Þ

around λ ¼ 0. We can see this by noting that the small-λ
expansion of Eqs. (17) and (18) reproduces the correspond-
ing equations in the continuous-time case.

The integral equations can be solved analytically for
m → ∞, corresponding to an irrational value of η=π.
The details are discussed in Appendix G of the SM [28]
and the result is the enveloping function

lim
m→∞

DMazur ¼ 2

�
1 −

GdðjλjÞ
sinhðjλjÞ

�
; ð20Þ

FIG. 4. Drude weight at jλj ¼ 1 as computed using the Mazur
inequality (blue) and TEBD (yellow-red). The color scales from
yellow to red as the simulation time increases from t ¼ 50 to
t ¼ 1000. The TEBD simulations were performed using a bond
dimension of 64 and a system size N ¼ 3600. The inset in the
center of the lower panel shows a more precise set of simulations
using a bond dimension of 128 for a small section of cos η. The
top-left inset of the lower panel shows convergence towards the
fractal peak at η ¼ 3π=4 for bond dimension 256. To demonstrate
fractality, the upper panel only shows the Mazur bound without
the rescaling.
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where Gd denotes the Gudermannian GdðxÞ ¼
2 arctanðexÞ − π=2. This represents a continuous strict
lower bound on top of which an additional fractal structure,
shown in Fig. 4 for jλj ¼ 1, emerges.
On the free fermion line (J 0 ¼ 0 or m ¼ 2) exact

diagonalization shows the saturation of the lower bound,
which includes only a single conserved quantity Zðπ=2Þ.
It can easily be computed to give

DMazur ¼ 2½1 − sechðjλjÞ�: ð21Þ

For a complete jλj dependence of the Mazur lower bound
see Fig. 5. Note that the jλj → ∞ limit is always 2. This can
easily be explained, since there the local propagator reduces
to a SWAP gate. As such, transport becomes perfectly
ballistic with no scattering at all.
Discussion.—We have demonstrated and proven ballistic

transport in a periodically driven interacting quantum spin
chain, namely in the Trotterized XXZ spin-1=2 model. We
have used the notion of ballistic spin transport referring to a
linearly growing extensive spin current after a quench from
an inhomogeneous initial state with either a linear gradient
or a step bias in the magnetization profile. We argue that
this is the most natural definition of ballistic transport in the
case of discrete-time propagation. Using the quasilocal
conservation laws that we constructed by means of quan-
tum-group theoretic methods, we have calculated the lower
bound on the spin Drude weight and explicitly shown its
fractal dependence on the anisotropy parameter. Extensive
numerical simulations suggest the saturation of the lower
bound—see Fig. S-2 in Appendix H of the SM. Note,
however, that for a fixed commensurate anisotropy
η ¼ lπ=m the convergence with time seems to become
extremely slow with increasing m, certainly beyond ulti-
mate verification with state-of-the-art numerical methods.
In the continuous-time limit we correctly reproduce the

well-established results of ballistic spin transport in the
XXZ model. However, since the thermodynamic Bethe

ansatz has not yet been developed for driven integrable
systems [35], our results open interesting new avenues for
research. The conservation laws that we proposed (see also
Ref. [36]) can be directly applied for construction of
complete generalized Gibbs ensembles and development
of generalized hydrodynamics in integrable Floquet systems.
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