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Nonequilibrium sampling is potentially much more versatile than its equilibrium counterpart, but it comes
with challenges because the invariant distribution is not typically known when the dynamics breaks detailed
balance. Here, we derive a generic importance sampling technique that leverages the statistical power of
configurations transported by nonequilibrium trajectories and can be used to compute averageswith respect to
arbitrary target distributions. As a dissipative reweighting scheme, themethod can be viewed in relation to the
annealed importance sampling (AIS) method and the related Jarzynski equality. Unlike AIS, our approach
gives an unbiased estimator, with a provably lower variance than directly estimating the average of an
observable.We also establish a direct relation between a dynamical quantity, the dissipation, and thevolumeof
phase space, from which we can compute quantities such as the density of states and Bayes factors. We
illustrate the properties of estimators relying on this sampling technique in the context of density of state
calculations, showing that it scales favorablewith dimensionality—in particular, we show that it can be used to
compute the phase diagram of the mean-field Ising model from a single nonequilibrium trajectory. We also
demonstrate the robustness and efficiency of the approach with an application to a Bayesian model
comparison problem of the type encountered in astrophysics and machine learning.
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Statistical estimation using averages over a dynamical
process typically relies on the principle of detailed balance.
Consider a dynamical system

_Xðt; xÞ ¼ b(Xðt; xÞ) Xð0; xÞ ¼ x; ð1Þ
where x ∈ Ω ⊂ Rn is a state that is propagated in time to
Xðt; xÞ via the vector field b∶Ω → Rn. If the dynamics is
microscopically reversible with respect to some target
density ρðxÞ, then this density is preserved under time
evolution. Practically, this means that the expectation of an
observable ϕðxÞ with respect to ρðxÞ, which we denote by
hϕi, can be computed as a time average along an equilib-
rium trajectory generated from (1), provided that the
dynamics is ergodic. This direct sampling scheme becomes
inefficient if the expectation hϕi is dominated by values of
x that are rare under ρðxÞ and therefore infrequently visited
by the dynamics (1).
Importance sampling estimates relying on nonequili-

brium dynamics have shown success in a variety of
applications, from statistical physics to machine learning
[1–7]. Here, we derive a class of estimators based on an
exact reweighting of the samples gathered during a non-
equilibrium process with a stationary density. Similar to the
annealed importance sampling (AIS) method [6] and
estimators based on the Jarzynski equality [1], our scheme
accelerates the transport of density to rare regions of phase
space, which may make substantial contributions to equi-
librium averages. This basic idea is exploited by many

different enhanced sampling techniques [8–11]. Physically,
the statistical weight of the transported density can be
interpreted through the fluctuation theorem as a dissipative
reweighting whose value can be derived explicitly. As we
show, the resulting estimator is unbiased, unlike the AIS
estimator, which requires computing a ratio of sample
means [cf. Eq. (12) of Ref. [6] ]. Our estimator always has a
lower variance than the direct estimator, a reduction that
comes at the nontrivial cost of generating trajectories. That
said, nonequilibrium transport enables us to access states
that are exponentially rare in original density but which
may dominate expectation values; direct sampling fails
dramatically in such settings.
Nonequilibrium estimators.—A generic importance

sampling scheme to compute the average with respect to
some target density ρðxÞ reweights samples drawn from
another density ρneðxÞ

hϕi ¼ hϕρ=ρneine: ð2Þ

Our samplers use for ρneðxÞ the nonequilibrium stationary
density of a dynamical system based on generating tra-
jectories by an initiate-then-propagate procedure: we draw
points x from the density ρðxÞ that we then propagate
forward and backward in time using the dynamics (1) until
the trajectories Xðt; xÞ hit some fixed target set. Concrete
applications determine the appropriate choice of target sets:
they could, for example, be the boundary of Ω or the fixed
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points of (1) in Ω [12]. Using the set of trajectories
generated this way, we define the nonequilibrium average
h·ine as

hϕine ¼
1

hτi
Z
Ω

Z
τþðxÞ

τ−ðxÞ
ϕ(Xðt; xÞ)dtρðxÞdx; ð3Þ

where τþðxÞ ≥ 0 and τ−ðxÞ ≤ 0 are the first times at which
Xðt; xÞ ∈ ∂Ω in the future or in the past, respectively, and
hτi ¼ hτþi − hτ−i [14]. By changing integration variables
using Xðt; xÞ → x and t → −t, we can express (3) as

hϕine ¼
1

hτi
Z
Ω
ϕðxÞ

Z
τþðxÞ

τ−ðxÞ
Jðt; xÞρ(Xðt; xÞ)dtdx; ð4Þ

where Jðt; xÞ is the Jacobian of the transformation

Jðt; xÞ ¼ exp
�Z

t

0

∇ · b(Xðs; xÞ)ds
�
: ð5Þ

Physically, the Jacobian corresponds to the total energy
dissipation up to time t along the trajectory. This derivation
is described in detail in the Supplemental Material [13].
Now, (4) can be interpreted as an expectation with respect
to a nonequilibrium density, hϕine ¼

R
Ω ϕðxÞρneðxÞdx,

with ρneðxÞ given by

ρneðxÞ ¼
1

hτi
Z

τþðxÞ

τ−ðxÞ
Jðt; xÞρ(Xðt; xÞ)dt: ð6Þ

We can now use this expression for ρneðxÞ in (2) for
reweighting. As shown in the Supplemental Material [13],
this gives

hϕi ¼
�R

τþ
τ− ϕ(XðtÞ)JðtÞρ(XðtÞ)dtR

τþ
τ− JðtÞρ(XðtÞ)dt

�
; ð7Þ

which yields the estimator, one of our main results,

hϕi¼ lim
N→∞

hϕiN;

where hϕiN ¼ 1

N

XN
i¼1

R τþðxiÞ
τ−ðxiÞ ϕ(Xðt;xiÞ)Jðt;xiÞρ(Xðt;xiÞ)dtR τþðxiÞ

τ−ðxiÞ Jðt;xiÞρ(Xðt;xiÞ)dt
;

ð8Þ

provided that the points xi are drawn (not necessarily
independently) from ρðxÞ. This equation reweights points
sampled along a nonequilibrium trajectory according to
their dissipation, a physically analogous strategy to that
in AIS.
Unlike other dissipative reweighting strategies, the

estimator hϕiN is unbiased, valid for any dynamics (1)
and any target density ρðxÞ. Like standard Metropolis
Monte Carlo calculations, it only requires knowing the

density up to a normalization factor. It has lower variance
than the direct estimator N−1PN

i¼1 ϕðxiÞ [15], since the
variance of this direct estimator is N−1ðhϕ2i − hϕi2Þ,
whereas the variance of hϕiN is N−1ðA − hϕi2Þ with
A ≤ hϕ2i, since Jensen’s inequality implies

�����
R
τþ
τ− ϕ(XðtÞ)JðtÞρ(XðtÞ)dtR

τþ
τ− JðtÞρ(XðtÞ)dt

����
2
�

¼ A

≤
�R

τþ
τ− jϕ(XðtÞ)j2JðtÞρ(XðtÞ)dtR

τþ
τ− JðtÞρ(XðtÞ)dt

�
¼ hϕ2i: ð9Þ

With a proper choice of bðxÞ, the estimator hϕiN in (8) has
the potential to significantly outperform the direct estima-
tor. It does so by transporting points drawn naively from
ρðxÞ towards regions that statistically dominate the expect-
ation of ϕðxÞ. In practice, it is also simple to use (i) sample
points xi from ρðxÞ using, e.g., standard Monte Carlo
calculations, (ii) compute the trajectory Xðt; xiÞ passing
through each of these points by integrating (1) forward and
backward in time until X(τ�ðxiÞ; xi) ∈ ∂Ω [which also
gives τ�ðxiÞ], (iii) use these data to calculate Jðt; xiÞ from
(5) first, then the integrals in (8), and (iv) average the results
to get hϕiN . Note that the operations in (ii) and (iii) can be
performed in parallel, and we can monitor the value of the
running average hϕiN as N increases to check convergence.
Density of states (DOS).—Consider a d-dimensional

system with position q ∈ Rd, momenta p ∈ Rd, and
Hamiltonian Hðq; pÞ ¼ 1

2
jpj2 þUðqÞ; where UðqÞ is some

potential bounded from below. Let VðEÞ be the volume of
phase space below some threshold energy E,

VðEÞ ¼
Z
Hðq;pÞ<E

dqdp: ð10Þ

FromVðEÞ one can compute the DOS,DðEÞ¼V 0ðEÞ, or the
canonical partition function, ZðβÞ ¼ R

R e−βEDðEÞdE ¼
β
R
R e−βEVðEÞdE.
To calculate (10) with our estimator (8), we set x ¼

ðq; pÞ, define Ω ¼ fðq; pÞ∶Hðq; pÞ < Emaxg for some
Emax < ∞, and use dissipative Langevin dynamics with
bðxÞ ¼ (p;−∇UðqÞ − γp) in (1)

_q ¼ p; _p ¼ −∇UðqÞ − γp; ð11Þ

for some friction coefficient γ > 0. With this choice, the
dissipative term in the estimator (8) takes the simple form

Jðt; xÞ ¼ e−dγt: ð12Þ

If we also choose the target density ρðxÞ to be uniform inΩ,
the estimator further simplifies due to cancellation of the
two ρ terms in (8). We arrive at
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VðEÞ
VðEmaxÞ

¼ lim
N→∞

1

N

XN
i¼1

e−dγ½τEðxiÞ−τ−ðxiÞ�; ð13Þ

where τEðxÞ denotes the positive (and possibly infinite) or
negative time for a trajectory initiated from x ¼ ðq; pÞ to
reach energy E ≤ Emax under the dynamics (11).
Equation (13) is our second main result: it establishes a
dictionary between a nonequilibriumdynamical quantity and
a purely static, global property of the energy landscapeVðEÞ.
This result asserts that the rate of decrease of the volume of
phase space can bemeasured by computing an average of the
total dissipation of nonequilibrium descent trajectories. We
do not know of an analogous result in the literature.
The τþðxÞ terms vanish in this dynamics because the

time to reach a local minimum diverges [16]. In practice,
we halt the forward trajectories when the norm of the
gradient is below some tolerance. To compute an unnor-
malized volume, we can estimate VðEmaxÞ with standard
Monte Carlo integration.
The power of the procedure we have described comes

from the fact that the forward trajectories are guaranteed to
visit regions of low energy around local minima of UðqÞ
that would otherwise be difficult to sample by drawing
points uniformly in fHðq; pÞ < Emaxg. In this regard, our
approach is also similar to nested sampling [17–21]. Like
nested sampling, we do not require an a priori stratification
of the energy shells, which is the way the DOS is typically
calculated via thermodynamic integration [22,23] or simu-
lated tempering [24,25]. Our method also offers several
advantages over nested sampling. First, the depth of
energies reached in nested sampling is determined by
the initial number of points used in a computation. If
too few points are used, the calculation must be repeated in
full with a larger number of initial points. Here, the
accuracy of the calculation improves and explores deeper
minima simply by running additional ascent and descent
trajectories. In addition, our approach does not require
uniform sampling below every energy level, which is
required in nested sampling and is a difficult condition
to implement [20]. We must only generate points uniformly
below the highest energy level Emax, which is usually much
easier. Computationally, we also benefit from the fact that
every trajectory contributes independently to our estimator,
meaning that the implementation is trivially parallelizable.
Variance estimation in the small γ limit.—We know

from (9) that the variance of our estimator is lower than that
of the direct estimator. In the specific context of a DOS
calculation using (11), we can analyze the variance more
explicitly in the limit of small γ, in which the descent
dynamics in (11) reduces to a closed equation for the
energy E ¼ Hðq; pÞ on the rescaled time t0 ¼ γt. This
dynamics evolves on the disconnectivity (or Reeb) graph
[26], which branches at every energy level at which a basin
where Hðq; pÞ ≤ E splits into more than one connected
component. In the simplest casewhen the potentialUðqÞ has

a single well, the graph has only one branch and the value
of γ(τEðxiÞ − τ−ðxiÞ) becomes the same along every tra-
jectory when γ → 0. Therefore, the estimator (13) has zero
variance—a single trajectory gives the exact value for
VðEÞ=VðEmaxÞ. If the disconnectivity graph has several
branches, we can count all the paths along the graph starting
at E ¼ Emax that end at a given branch. Assuming that the
number of such paths is M ≥ 1, we can associate a deter-
ministic timeΔτEj > 0, possibly infinite, along each path.We
define ΔτEj with j ¼ 1;…;M as the total rescaled time the
trajectory takes to go from Hðq; pÞ ¼ Emax to Hðq; pÞ ¼ E
by the effective dynamics for E along the path with index j
andΔτEj ¼ ∞ if the path terminates at an energyE0 > E. For
any initial condition, limγ→0γ(τ

EcxiÞ − τ−ðxiÞ) ¼ ΔτEj for
some index j, meaning the only random component in the
procedure is which path is picked if the trajectory starts at xi.
We denote by pj the probability, computed over all initial
conditions drawn uniformly in fHðq; pÞ < Emaxg, that the
path with index j is taken. Then in the small γ limit the mean
and variance of the estimator (13) are

mean ¼ VðEÞ
VðEmaxÞ

¼
XM
j¼1

pje
−dΔτEj ;

variance ¼
XM
j¼1

pje
−2dΔτEj −mean2: ð14Þ

The specific values of pj, ΔτEj , and M that determine the
quality of the estimator (13) depend on both the structure of
the disconnectivity graph and the effective equation for the
energyon this graph.What is remarkable, however, is thatpj,
ΔτEj , andM depend on the dimensionality of the system only
indirectly. In high dimensional settings, the complexity of the
disconnectivity is a generic challenge, but our approach has
favorable properties even in these difficult cases. In particu-
lar, the computational cost of the procedure increases only
linearly in γ aswedecrease this parameter to small values.We
also stress that the formulas (14) for the mean and variance
rely on the assumption γ ≪ 1, but the estimator remains valid
for any value of γ.
Phase diagram of the mean-field Ising model.—As an

illustration of the statistical power contained in the non-
equilibrium trajectories, we computed the phase diagram of
the mean-field Ising model with potential

UðqÞ ¼ −
1

2d

Xd
i;j¼1

cosðqiÞ cosðqjÞ: ð15Þ

This system is known to display a phase transition in
temperature at the critical βc ¼ 2 [27]. The potential (15) is
double well, but because of the symmetry q → −q a single
forward and backward propagation can be used to estimate
the volume ratio VðEÞ=VðEmaxÞ. We note that, while there
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are only two energy minima, the energy landscape has an
exponential number of critical points [the derivative with
respect to θj vanishes 2d when sinðθjÞ ¼ 0], so the
geometry of the landscape is nontrivial. We performed
this calculation when d ¼ 100 with γ ¼ 10−3 to obtain the
result shown in Fig. 1: as can be seen, this result spans 300
orders of magnitude and compares very well with the
analytical estimate that can be obtained in the large d limit,
as described in the Supplemental Material [13]. The
single ascent descent trajectory pair can also be used to
calculate the free energy in β and magnetization m ¼
d−1

P
d
i¼1 cosðqiÞ of the system (cf. Supplemental Material

[13]). The result shown in the inset of Fig. 1 demonstrates
that our estimate compares well with the large d estimate.
The code to reproduce these experiments is available on
GITLAB [28]. The numerical experiments require only
several minutes of computation on a single core, but
parallelization strategies could dramatically reduce the
duration.
Bayes factor.—The computations for the density of

states have an equivalent manifestation in Bayesian esti-
mation. Given a model M, one seeks to maximize the
probability of a set of parameters θ ∈ Rd conditioned on
observations of data D. Using Bayes’ theorem, we can
write

PðθjD;MÞ ¼ LðθÞπðθÞ=Z; ð16Þ

where LðθÞ ¼ PðDjθ;MÞ is the likelihood function,
πðθÞ ¼ PðθjMÞ is the prior, and Z ¼ PðDjMÞ ¼R
LðθÞπðθÞdθ is the partition function, often called the

Bayesian evidence in this context; it is the canonical
partition function with β ¼ 1.
In Bayesian inference, we choose a model and then

estimate its parameters without knowledge of the partition
function by doing gradient descent on − logLðθÞ≡UðθÞ,
which depends on the model we have taken. However, there
is no a priori guarantee that the chosen model is optimal, so
it is often necessary to make comparisons of two distinct
models M and M0. Ideally, one would compare the
probability of the observed data given each model, that
is, the Bayes factors

Z=Z0 ¼ PðDjMÞ=PðDjM0Þ: ð17Þ

Similarly, computing posterior probabilities also requires
knowledge of the partition function.
As we have already emphasized, computing Z is

intractable analytically in all but the simplest cases.
Skilling [17] demonstrated that it is possible to numerically
evaluate the “prior volume”

VðLÞ ¼
Z
LðθÞ≥L

πðθÞdθ ð18Þ

to produce an estimate of Z via

Z ¼
Z

L0

0

VðLÞdL; ð19Þ

where L0 is the maximum value of the likelihood. Just as in
the density of states calculation, we can evaluate the
Bayesian evidence by using trajectorial estimators.
To do so, we sample parameters of the model M

uniformly and define a flow of parameters via dissipative
Langevin dynamics with UðθÞ ¼ − logLðθÞ (which also
gives L0 from the terminal point of the descent trajectories).
We construct an estimate of Z by computing VðLÞ using
Eq. (13) and numerically integrating Eq. (19) using quad-
rature. Note that the contribution from the momenta can be
factored out and the resulting Gaussian integral can be
computed exactly.
We tested our approach using a mixture of Gaussians

model, a benchmark that has been used to characterize
nested sampling for inference problems [29]. The model is
defined as a mixture of n distributions in dimension d with
amplitudes Ai,

LðθÞ ¼
Xn
i¼1

Aie−
1
2
ðθ−μiÞTΣ−1

i ðθ−μiÞ: ð20Þ

Though we do not have access to the exact expression for
VðEÞ at all energy levels in this model, we can evaluate the
partition function Z exactly.
We used n ¼ 50 wells with depths exponentially dis-

tributed in dimension d ¼ 10, an example much more

10-2 10-1 100 101 102

10-300

10-200

10-100

100

FIG. 1. Mean-field Ising model with potential (15): volume
ratio obtained from (13) using a single ascent descent trajectory
pair. (Inset) The free energy in β and m ¼ d−1

P
d
i¼1 cosðqiÞ that

can also be estimated from this single trajectory (right half) and
analytically using large deviation theory (LDT) (left half).
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complex than previous benchmarks. While this landscape is
not rugged, in a mixture of Gaussians problems entropic
effects can lead to extremely difficult optimization prob-
lems because we are required to sample exponentially small
volumes. In this regime, brute force Monte Carlo
approaches fail dramatically. Figure 2 illustrates the stati-
stical power of the trajectory reweighting approach. With
only 100 trajectories, we recover the volume of states for
the likelihood function extremely accurately, especially at
low energies, where the standard error is vanishingly small.
An accurate estimate at low energies leads to robust
estimates of Z because the contribution to Z decays
exponentially with E. In particular, we know the low
energy volume estimates are accurate because we compute
Z ¼ 17.41 versus the exact result Z ¼ 17.10. For this
calculation, we set Emax ¼ 450, meaning that the states
we neglected have likelihood lower than e−450.
Conclusions.—Any estimate of the microcanonical par-

tition function requires a thorough exploration of the states
of the system. Both naive Monte Carlo sampling and
equilibrium dynamics often fail to visit states, which,
though rare, dramatically impact the thermodynamic prop-
erties of the system. A nonequilibrium dynamics suffers
from precisely the opposite problem: it explores the states
rapidly, but not in proportion to their equilibrium proba-
bilities. Our estimator, via Eq. (13), establishes a simple
link between a nonequilibrium dynamical observable and a
static property, the volume of phase space.

With a properly formulated algorithm, we can fully
account for the statistical bias of a nonequilibrium
dynamics. The resulting estimators can access states that
are extremely atypical in equilibrium sampling schemes, but
nevertheless physically consequential. While we demon-
strated the potential of these estimators by computing the
density of states and the computationally analogous Bayes
factor, the expression in (8) is extremely general. Attractive
applications within reach include adapting this approach to
basin volume calculations [30,31], computing the partition
function of restricted Boltzmann machines [6,32], and
importance sampling to compute properties of systems in
nonequilibrium stationary states, like active matter [33,34].
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