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We present a statistical analysis of the experimental trajectories of colloids in a dilute suspension of the green
algae Chlamydomonas reinhardtii. The measured probability density function (pdf) of the displacements of
colloids covers 7 orders of magnitude. The pdfs are characterized by non-Gaussian tails for intermediate time
intervals, but nevertheless they collapse when scaled with their standard deviation. This diffusive scaling
breaks down for longer time intervals and the pdf becomes Gaussian. However, the mean squared
displacements of tracer positions are linear over the complete measurement time interval. Experiments are
performed for various tracer diameters, swimmer concentrations, and mean swimmer velocities. This allows a
rigorous comparison with several theoretical models. We can exclude a description based on an effective
temperature and other mean field approaches that describe the irregular motion as a sum of the fluctuating far
field of many microswimmers. The data are best described by the microscopic model by J.-L. Thiffeault,
Distribution of particle displacements due to swimming microorganisms, Phys. Rev. E 92, 023023 (2015).
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Microscopic unicellular algae are abundant in the Earth’s
oceans, rivers, and lakes. They are crucial for the ecosystem
because they contribute to an estimated 50% of the world’s
oxygen production [1,2]. In addition, it is suspected that they
play an important role in stirring the top level of the oceans
[3–6]. This so-called biogenetic mixing is important for the
availability of nutrients for the survival of many organisms.
In the presence of active microswimmers, a passive fluid is
stirred and shows an active spatiotemporal random fluid
motion. These fluctuations at the scale of microorganisms
can be characterized by tracking suspended tracer particles
such as microspheres [7]. They undergo both Brownian
thermal motion and follow the active random fluid motion
generated by swimmers. A seminal work was presented by
Wu and Libchaber in 2000 [8], with a study on concentrated
Escherichia coli bacteria suspensions. They report a non-
Brownian, superdiffusive behavior of the mean squared
displacement, MSD(t), for short time intervals, but the
colloids were much bigger than the bacteria. In 2009,
Leptos et al. [9] presented experimental data on diffusing
microspheres in a dilute suspension of the swimming algae
Chlamydomonas reinhardtii (CR).
CR is a puller type swimmer and has become a standard

for this type of microswimmers in many laboratory experi-
ments [10]. Leptos et al. [9] observed a linear MSD(t) with
a diffusive scaling of the pdf of tracer displacements that
could be rescaled with the standard deviation and remain
self-similar despite being non-Gaussian. One class of
models that can show such a behavior is known as
continuous time random walk (CTRW)[11]. Other theo-
retical models predict that the scaling of the distribution

function is transient and disappears for longer measure-
ments [12]. The experiments by Leptos et al. [9] were
followed by several further experiments on biological
microswimmers [13], artificial swimmers [14,15], and
several theoretical models [11,12,16–20]. We followed
the experimental concept of Leptos et al. [9] but with
the following extension: we used colloids ranging from
sizes smaller to larger (compared to the swimmers) and two
algae strains with significantly different speeds. Our
essentially improved statistics allowed us to obtain the
details of the pdf at the low-probability tails and long
trajectories to demonstrate the breakdown of the non-
Gaussian behavior of the pdf. This allowed us to exclude
several theoretical and phenomenological explanations and
descriptions. Furthermore, we could conclusively answer a
key question: until which time scales can the enhanced
diffusivity be described by the short-time interactions
between single swimmers and tracers? Therefore, we
analyze (1) the MSD of trajectories of tracer particles with
various diameters for two different swimmer velocities,
(2) the non-Gaussian shape of the pdfðx; tÞ at a fixed time
difference, and (3) the temporal propagation of the pdf and
its kurtosis in order to quantify for the non-Gaussianity and
the breakdown of diffusive scaling as proposed in Ref. [12].
Experiments were performed with an Eclipse TE-2000-S

Nikon microscope with a 4× objective (NA ¼ 0.2) and a
Flea3 FL3-U3-88S2C-CMOS-camera at a frame rate of
60 Hz and with a resolution of 2048 × 1080 px. This
relatively small magnification results in a very large field
of view (1.56 × 0.82 mm) and the depth of field (more than
50 μm), so that we can follow the 2D projection of the 3D
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motion of hundreds of colloids in focus for several minutes,
which is favorable for good statistics compared to a more
precise determination of the position with a higher magni-
fication [21]. The suspensions were observed in microscopy
chambers (ibidi®, μ-Slide VI 0.4) with a thickness of
400 μm in the direction of gravity and a lateral extension
of 3.8 × 17 mm. The middle of the chamber was in focus to
exclude boundary effects. The specific swimmer number
density was determined immediately before performing an
experiment by counting the swimmers in self-made cham-
bers of 60 μm height. At our low-number densities, mis-
counts due to overlaps could be excluded but due to sample
inhomogeneities and local density variations, the maximal
error in swimmer number densities is estimated to be 25%.
Image sequences were recorded by dark-field microscopy. A
red light source (λ > 600 nm) was used for illumination at
low intensities because the strains of CR (WT:T222-mtþ
and SAG 11-32c-mt) are phototactic for shorter wavelengths.
We took special care to obtain almost identical diameters of
theCRof approximately 10 μmby ensuring that cells were in
the same stage of their life cycle. The algae were grown in
TAP medium at temperature T¼ð296�1ÞK, and the vis-
cosity of the suspending medium was η¼ð0.95�0.1ÞmPas
[22]. The mean velocities of the strains WT.T222 mtþ
and SAG 11-32c-mt- are U¼ð35�10Þ μm=s and ð70�
20Þ μm=s, respectively. The latter has a faster flagella
frequency and is referred to as “fast swimmer” hereafter.
We use mono-disperse (σ < 5%) uncoated polystyrene
microspheres as colloids (Fluka/Sigma Aldrich) with diam-
eters d between 1 and 20 μm. They have a density of
1.05 g=cm3 and for experiments with particles larger than
3 μm a density matching with a suitablemixture of water and
heavy water (D2O) was necessary to avoid sedimentation. In
these experiments, the algaewere grown in TAPmedium and
heavy water was added shortly before the experiment. The
swimming speed of the algae in the solutionwithD2Odid not

change compared to the standard solution within an hour, but
the algae did not survive formore than a few hours. The slight
viscosity increase due to the heavywater ηD2OþH2O=ηH2O > 1

is taken into account as a correction for the effective diffusion
coefficient, for the purpose of direct comparison with experi-
ments in the standard solution. The diffusion coefficient for
Brownian motion is given by the Stokes-Einstein relation
D0 ¼ kBT=ð6πηRÞ with tracer radius R and temperature T.
To extract the trajectories from image sequences, we used a
MATLAB®-based software developed by our group [21,23].
The sup-pixel resolution of 0.1 μm of tracer positions is
achieved by intensity weighted centroid determination.
Figures 1(a) and 1(c) show the trajectories of two tracer

particles of different sizes at a moment when a swimmer
passes close by. Thermal noise results in a typical
Brownian motion and the concomitant random displace-
ments are proportional to the size of the particles. During
the short time interval when the swimmer is close to the
tracer, the latter performs a large, looped motion, shown in
Fig. 1(a). According to Refs. [12,24], those loops mainly
contribute to the observed enhanced diffusivity. Note that
in our setup, we did not observe that a tracer was carried
by a swimmer over unexpectedly long distances [13].
The observed duration of the interaction of a tracer with a
swimmer is very small compared to the full trajectory.
This is visualized by the color code in Fig. 1(a).
Figure 1(b) shows a simulation of a tracer trajectory with
a passing swimmer modeled as a squirmer, including the
contribution of thermal Brownian noise. A squirmer is a
model for an active moving sphere in Stokes flow. The so-
called squirmer parameter β defines whether the flow field
is comparable to a pusher or puller [25]. We reproduced
the simulations described in Ref. [12]. In contrast to
Brownian motion, the size of the loops due to passing
swimmers is independent of the size of the tracer, shown
in Fig. 1(c).

(a) (b) (c)

FIG. 1. Microscope image of a microswimmer, sketches of colloids, and tracer trajectories. Color encodes the time. The sketched
microspheres (gray disks) and the swimmer are scaled. (a) Trajectory of a microsphere over 80s and a short part of the swimmer
trajectory at around t ≈ 70 s). At the moment of interaction, the irregular Brownian motion of the tracer is superimposed on a loop.
(b) Simulated trajectory with a similar loop due to a spherical squirmer with a speed of U ¼ 35 μm=s and a radius l ¼ 6 μm moving
along the direction of the arrow at t ≈ 60 s [12]. A representative thermal Brownian motion was added. (c) Experimental trajectory of a
much bigger sphere interacting with a swimmer (not shown) at t ≈ 40 s. In this case, the Brownian motion is less pronounced, but the
size of the loop is comparable to (a),(b).
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Figure 2(a) shows the MSDs. They were extracted by
taking the time average for each trajectory followed by an
ensemble average [21,26]. We found a perfect linear
dependency MSD ∝ t over almost 3 orders of magnitudes
for all particle diameters, swimmer number densities, and
swimmer velocities. Only at short intervals, t < 0.1 s, the
MSD deviates slightly from the linear slope due to
uncorrelated position detection noise [26,27]. Based on
this linearity, an effective diffusion coefficient can be
defined as MSDðtÞ ¼ 4Defft for two spatial dimensions.
Symbols in Fig. 2(b) show the effective diffusion coef-
ficients, Deff , as the function of the measured swimmer
number density n. The lines represent the predictions for a
squirmer model [12] [Eq. (27)]

Deff ¼ D0 þ
�
0.266þ 3

4
πβ

�
Unl4; ð1Þ

where U is the mean swimmer velocity, l ¼ 6 μm the
radius of the squirmer, and β ¼ 0.6 the fitted squirmer
parameter. A positive β > 0 refers to a puller swimmer.
The error bars in Deff are smaller than the symbol size, and
the Einstein-Stokes diffusion coefficients D0 in pure TAP
medium agree with the measured value in the range of few
percent. The measured enhanced diffusion Deff −D0 is
independent of the tracer size. As predicted by Eq. (1), the
slope of swimmer density versus the effective diffusion of
the fast strain with a double mean velocity is twice that of
the slower swimmers. Therefore, we can exclude those
characterizations where Deff is associated with an effective
temperature kBTeff ¼ 6πηRDeffðnÞ, because we found that
the increment in the diffusivity is independent of the tracer
diameter [8,28–31]. An effective temperature definition
also requires a Maxwell-Boltzmann distribution in the
velocities of the tracers, but this can be excluded because
we observed a non-Gaussian probability density function
for the displacements.
The probability density function pdfðx; tÞ of tracer

displacements contains more information than the MSD,
the second moment MSDðtÞ ¼ R

x2 pdfðx; tÞdx of the
distribution. Figure 3 shows an exemplary pdf from an
experimental data set of length 300s with approximately
5 × 104 (partially fragmented) trajectories with a total of
3 × 107 data points. A local adaptive kernel density
estimator was used to estimate the empirical pdf [32].
Only the right part of the pdf is shown because it is
symmetric. The displacement is nondimensionalized x̂ ¼
x=ð2DefftÞ1=2 according to the diffusive scaling introduced
in Ref. [9]. At this low number density of n ¼ 1.5×
106 cm−3, the mean interswimmer distance is 90 μm and
we can exclude any collective behavior. The presented
dataset strongly extends the data range presented in
Ref. [9]. This allows us to compare our data with
predictions from various models, in particular with respect
to the non-Gaussian tails on a logarithmic scale over seven
decades. The central part of the pdf is always Gaussian, due
to the thermal motion of the colloids. The inset in Fig. 3
shows the power law tail pdf ∝ x̂−4 predicted by Pushkin
and Yeomans for dipolar swimmers such as CR [24]
[Eq. (12)]. This behavior is also predicted by the micro-
scopic model by Thiffeault [12], up to the distance where a
cell swims within the time interval t. The authors in Ref. [9]
fit their data with a superposition of a Gaussian and an
exponential [33]. Our extended dataset is not well charac-
terized by this functional approximation. Eckhard et al.
[11] suggested a description in terms of a CTRW. One
remarkable feature of a CTRW is that it is possible to
construct random walks with a linear MSD in time but
with an underlying non-Gaussian pdf. The CTRW pre-
sented in Ref. [11] predicts a self-similarity of the pdf
with the appropriate scaling of space and time [34]. Such a
self-similarity was already observed by Leptos et al. [9] and
referred to as diffusive scaling. We fit our data to Eq. (3) in

(a)

(b)

FIG. 2. (a) Mean squared displacements, MSDs, for various
tracer diameters in the suspensions of slow and fast swimmers
and without swimmers. (b) Effective diffusion coefficients vs
swimmer number density n for various tracer diameters d of slow
swimmers, and one example for fast swimmers. For particles with
a diameter d ≥ 3 μm, D2O was added to the TAP solution to
prevent sedimentation (open symbols). The lines correspond to
predictions by Eq. (1). Error bars in swimmer densities are only
shown for the 2 μm colloids. Errors bars inDeff are of the order of
the symbol size.
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Ref. [11]. Although the empirical MSD and pdf can be
reproduced by the CTRW model, simulated trajectories
never show loops as observed in experiment, as shown in
Fig. 1. We also compare the experimental data with the
microscopic model [12]. The calculated pdf deviates
slightly from our empirical pdf, in particular at the far
end of the tail. One reason for this is that the model
squirmers with a single velocity U cover a maximum
distance of U × t ¼ 14 μm in the considered time interval
of 0.4 s. This leads to a maximum tracer displacement
caused by a single particle-swimmer interaction. In the
experiments, the velocities follow a broad distribution and
consequently the sharp drop in the pdf is softened [35].
During longer time intervals, several swimmer-tracer

interactions occur, which result in additional, statistically
independent displacements, and according to the central
limit theorem the sum of many displacements yields a
Gaussian pdf. This means that for longer time durations the
enhanced diffusing coefficient Deff should persist, but the
non-Gaussianity and the associated diffusive scaling should
break down. This is shown experimentally in Fig. 4 at
t⪆ 2 s, where the pdf evolves toward a Gaussian. In
contrast, the CTRW approach includes an intrinsic self-
similarity for all times. In accordance with our measure-
ments, the model by Thiffeault predicts the breakdown of
the diffusive scaling, i.e., a transition from a non-Gaussian
to a Gaussian pdf for longer time durations. Therefore,
the pdfs cannot be scaled to collapse onto a single
curve. However, the MSD is still linear throughout our

measurements (see. Sec. VI in Ref. [12]). Another good
measure to quantify the deviation from a Gaussian is the
kurtosis κ, the fourth standardized moment, shown in the
inset of Fig. 4. Both empirical kurtosis and the calculated
kurtosis from the microscopic model agree reasonably well.
The kurtosis is very sensitive to the tails of a distribution
and a broad swimmer speed distribution might explain the
remaining discrepancy (see also Supplemental Material
[35]). The peak in the kurtosis, for ≈0.2 s, indicates the
interaction time of a tracer with a swimmer. As expected,
experiments without swimmers have a time independent
κ ¼ 3. The empirical approach in Ref. [9] for the pdf as a
sum of a Gaussian and an exponential is time invariant and
predicts a fixed κ ¼ 3.55. The pdf of a CTRW decays as a
power law [37] with an exponent lower than 4, so that the
integral for the kurtosis does not converge. The same holds
for the asymptotic prediction pdf ∝ x̂−4 in [24] [Eq. (12)].
In conclusion, we have shown that the enhanced dif-

fusion of tracer particles stirred by microswimmers is
caused by rare events of single swimmer-tracer encounters,
leading to looped tracer movements. The empirical pdf of
tracer displacements allowed us to exclude several theo-
retical models. For intermediate time intervals, the pdf can
be scaled to collapse onto a master curve referred to as
diffusive scaling, but the scaling breaks down for longer
times. We found that the microscopic model by Thiffeault
[12] describes our data best for all time scales.
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FIG. 3. Experimental pdfðx̂; tÞ ( ) at t ¼ 0.4 s and a number
density of n ¼ 1.5 × 106 cm−3 for colloids of d ¼ 3 μm. The
small red shadowed region indicates the 95% bootstrap con-
fidence interval [36]. Various characterizations and predictions
are shown: ( ) a superposition of Gaussian and exponential,
( ) CTRW model, ( ) the microscopic model, and the
asymptotic pdf ∝ x̂−4 in the inset; see text for parameters. The
measured pdf for pure Brownian motion is shown as ( ).
The yellow area indicates the data range presented in Ref. [9].
The black arrow indicates the scaled swimming distance of the
microswimmers within 0.4 s.

FIG. 4. Experimental pdf at n ¼ 1.5 × 106 cm−3 for various
time intervals ti to visualize the breakdown of the diffusive
scaling. The pdf becomes a Gaussian for ti > 2 s as predicted in
Ref. [12]. The inset shows the kurtosis as measure to quantify the
non-Gaussian tails.
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