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Spin valves form a key building block in a wide range of spintronic concepts and devices from
magnetoresistive read heads to spin-transfer-torque oscillators. We elucidate the dependence of the
magnetic damping in the free layer on the angle its equilibrium magnetization makes with that in the fixed
layer. The spin pumping-mediated damping is anisotropic and tensorial, with Gilbert- and Bloch-like terms.
Our investigation reveals a mechanism for tuning the free layer damping in situ from negligible to a large
value via the orientation of fixed layer magnetization, especially when the magnets are electrically
insulating. Furthermore, we expect the Bloch contribution that emerges from the longitudinal spin
accumulation in the nonmagnetic spacer to play an important role in a wide range of other phenomena in
spin valves.
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Introduction.—The phenomenon of magnetoresistance is
at the heart of contemporary data storage technologies
[1,2]. The dependence of the resistance of a multilayered
heterostructure comprising two or more magnets on the
angles between their respective magnetizations has been
exploited to read magnetic bits with a high spatial reso-
lution [3]. Furthermore, spin valves comprising two mag-
netic layers separated by a nonmagnetic conductor have
been exploited in magnetoresistive random access memo-
ries [2,4,5]. Typically, in such structures, one “free layer”
is much thinner than the other “fixed layer” allowing for
magnetization dynamics and switching in the former. The
latter serves to spin polarize the charge currents flowing
across the device and thus exert spin torques on the former
[6–9]. Such structures exhibit a wide range of phenomena
from magnetic switching [5] to oscillations [10,11] driven
by applied electrical currents.
With the rapid progress in taming pure spin currents

[12–20], magnetoresistive phenomena have found a new
platform in hybrids involving magnetic insulators (MIs).
The electrical resistance of a nonmagnetic metal (N) was
found to depend upon the magnetic configuration of an
adjacent insulating magnet [21–24]. This phenomenon,
dubbed spin Hall magnetoresistance (SMR), relies on the
pure spin current generated via spin Hall effect (SHE) in N
[25,26]. The SHE spin current accumulates spin at the
MI=N interface, which is absorbed by the MI depending on
the angle between its magnetization and the accumulated
spin polarization. The net spin current absorbed by the MI
manifests as additional magnetization-dependent contribu-
tion to resistance in N via the inverse SHE. The same
principle of magnetization-dependent spin absorption by
MI has also been exploited in demonstrating spin Nernst

effect [27], i.e., thermally generated pure spin current, in
platinum.
Although the ideas presented above have largely been

exploited in sensing magnetic fields and magnetizations,
tunability of the system dissipation is a valuable, under-
exploited consequence of magnetoresistance. Such an
electrically controllable resistance of a magnetic wire
hosting a domain wall [28] has been suggested as a basic
circuit element [29] in a neuromorphic computing [30]
architecture. In addition to the electrical resistance or
dissipation, the spin valves should allow for controlling
the magnetic damping in the constituent magnets [31].
Such an in situ control can be valuable in, for example,
architectures where a magnet is desired to have a large
damping to attain low switching times and a low dissipation
for spin dynamics and transport [13,16]. Furthermore, a
detailed understanding of magnetic damping in spin valves
is crucial for their operation as spin-transfer-torque oscil-
lators [10] and memory cells [5].
Inspired by these new discoveries [21,27] and previous

related ideas [31–34], we suggest new ways of tuning the
magnetic damping of the free layer F1 in a spin valve
(Fig. 1) via controllable absorption by the fixed layer F2 of
the spin accumulated in the spacer N due to spin pumping
[31,35]. The principle for this control over spin absorption
is akin to the SMR effect discussed above and capitalizes
on altering the F2 magnetization direction. When spin
relaxation in N is negligible, the spin lost by F1 is equal to
the spin absorbed by F2. This lost spin appears as tensorial
Gilbert [36] and Bloch [37] damping in F1 magnetization
dynamics. In its isotropic form, the Gilbert contribution
arises due to spin pumping and is well established [31–33,
35,38–40]. We reveal that the Bloch term results from
backflow due to a finite dc longitudinal spin accumulation
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in N. Our results for the angular and tensorial dependence
of the Gilbert damping are also, to best of our knowledge,
new.
We show that the dissipation in F1, expressed in terms

of ferromagnetic resonance (FMR) linewidth, varies with
the angle θ between the two magnetizations (Fig. 3). The
maximum dissipation is achieved in collinear or orthogonal
configurations depending on the relative size of the spin-
mixing g0r and longitudinal spin gl conductances of the
NjF2 subsystem. For very low gl, which can be achieved
employing insulating magnets, the spin pumping mediated
contribution to the linewidth vanishes for collinear con-
figurations and attains a θ-independent value for a small
noncollinearity. This can be used to strongly modulate the
magnetic dissipation in F1 electrically via, for example, an
F2 comprised by a magnetoelectric material [41].
FMR linewidth.—Disregarding intrinsic damping for

convenience, the magnetization dynamics of F1 including
a dissipative spin transfer torque arising from the spin
current lost Is1 may be expressed as

_̂m ¼ −jγjðm̂ × μ0HeffÞ þ
jγj
MsV

Is1: ð1Þ

Here, m̂ is the unit vector along the F1 magnetization M
treated within the macrospin approximation, γð< 0Þ is the
gyromagnetic ratio,Ms is the saturation magnetization, V is
the volume of F1, and Heff is the effective magnetic field.
Under certain assumptions of linearity as will be detailed
later, Eq. (1) reduces to the Landau-Lifshitz equation with
Gilbert-Bloch damping [36,37]

_̂m ¼ −jγjðm̂ × μ0HeffÞ þ ðm̂ × GÞ − B: ð2Þ

Considering the equilibrium orientation m̂eq ¼ ẑ, Eq. (2) is
restricted to the small transverse dynamics described by
mx;y ≪ 1, while the z component is fully determined by the
constraint m̂ · m̂ ¼ 1. Parametrized by a diagonal dimen-
sionless tensor α̌, the Gilbert damping has been incorporated

via G ¼ αxx _mxx̂þ αyy _myŷ in Eq. (2). The Bloch damping
is parametrized via a diagonal frequency tensor Ω̌ as
B ¼ Ωxxmxx̂þΩyymyŷ. A more familiar, although insuffi-
cient for the present considerations, form of Bloch damping
can be obtained by assuming isotropy in the transverse plane:
B ¼ Ω0ðm̂ − m̂eqÞ. This form, restricted to transverse
dynamics, makes its effect as a relaxation mechanism with
characteristic time 1=Ω0 evident. The Bloch damping, in
general, captures the so-called inhomogeneous broadening
and other, frequency independent contributions to the mag-
netic damping.
Considering uniaxial easy-axis and easy-plane anisotro-

pies, parametrized, respectively, by Kz and Kx [42],
the magnetic free energy density Fm is expressed as
Fm ¼ −μ0M ·Hext − KzM2

z þ KxM2
x, with Hext ¼ H0ẑþ

hrf as the applied static plus microwave field. Employing
the effective field μ0Heff ¼ −∂Fm=∂M in Eq. (2) and
switching to Fourier space [∼ expðiωtÞ], we obtain the
resonance frequency ωr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðω0 þ ωaxÞ

p
. Here, ω0 ≡

jγjðμ0H0 þ 2KzMsÞ and ωax ≡ jγj2KxMs. The FMR line-
width is evaluated as

jγjμ0ΔH ¼ αxx þ αyy
2

ωþ t
Ωxx þΩyy

2

þ tωax

4
ðαyy − αxxÞ; ð3Þ

where ω is the frequency of the applied microwave field
hrf and is approximately ωr close to resonance, and t≡
ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ω2

ax=4
p

≈ 1 for a weak easy-plane anisotropy.
Thus, in addition to the anisotropic Gilbert contributions,
the Bloch damping provides a nearly frequency-independent
offset in the linewidth.
Spin flow.—We now examine spin transport in the device

with the aim of obtaining the damping parameters that
determine the linewidth [Eq. (3)]. TheN layer is considered
thick enough to eliminate static exchange interaction
between the two magnetic layers [31,40]. Furthermore,
we neglect the imaginary part of the spin-mixing conduct-
ance, which is small in metallic systems and does not
affect dissipation in any case. Disregarding longitudinal
spin transport and relaxation in the thin free layer, the net
spin current Is1 lost by F1 is the difference between the spin
pumping and backflow currents [31]

Is1 ¼
gr
4π

ðℏm̂ × _̂m − m̂ × μs × m̂Þ; ð4Þ

where gr is the real part of the F1jN interfacial spin-mixing
conductance, and μs is the spatially homogeneous spin
accumulation in the thin N layer. The spin current absorbed
by F2 may be expressed as [31]

FIG. 1. Schematic depiction of the device under investigation.
The blue arrows denote the magnetizations. The fixed layer F2

magnetization remains static. The free layer F1 magnetization
precesses about the z axis with an average cone angleΘ ≪ 1. The
two layers interact dynamically via spin pumping and backflow
currents.
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Is2 ¼
g0r
4π

m̂2 × μs × m̂2 þ
gl
4π

ðm̂2 · μsÞm̂2;

≡ X
i;j¼fx;y;zg

gij
4π

μsj î; ð5Þ

where gl and g0r are, respectively, the longitudinal spin
conductance and the real part of the interfacial spin-mixing
conductance of the NjF2 subsystem, m̂2 denotes the unit
vector along F2 magnetization, and gij ¼ gji are the
components of the resulting total spin conductance tensor.
gl quantifies the absorption of the spin current along the
direction of m̂2, the so-called longitudinal spin current.
For metallic magnets, it is dominated by the diffusive spin
current carried by the itinerant electrons, which is dissi-
pated over the spin relaxation length [31]. On the other
hand, for insulating magnets, the longitudinal spin absorp-
tion is dominated by magnons [43,44] and is typically
much smaller than for the metallic case, especially at low
temperatures. Considering m̂2 ¼ sin θŷþ cos θẑ (Fig. 1),
Eq. (5) yields gxx ¼ g0r, gyy ¼ g0r cos2 θ þ gl sin2 θ, gzz ¼
g0r sin2 θ þ gl cos2 θ, gxy ¼ gyx ¼ gxz ¼ gzx ¼ 0, and gyz ¼
gzy ¼ ðgl − g0rÞ sin θ cos θ.
Relegating the consideration of a small but finite spin

relaxation in the thin N layer to the Supplemental Material
[45], we assume here that the spin current lost by F1 is
absorbed by F2, i.e., Is1 ¼ Is2. Imposing this spin current
conservation condition, the spin accumulation in N along
with the currents themselves can be determined. We are
primarily interested in the transverse (x and y) components
of the spin current because these fully determine the
magnetization dynamics (m̂ · m̂ ¼ 1)

Is1x ¼
1

4π

grgxx
gr þ gxx

ð−ℏ _my þmxμszÞ;

Is1y ¼
1

4π

�
grgyy

gr þ gyy
ðℏ _mx þmyμszÞ þ gyzμszð1 − lyÞ

�
;

μsz ¼
ℏgrðlxmx _my − lymy _mx − p _mxÞ

gzz − pgyz þ grðlxm2
x þ lym2

y þ 2pmyÞ
; ð6Þ

where lx;y ≡ gxx;yy=ðgr þ gxx;yyÞ and p≡ gyz=ðgr þ gyyÞ.
The spin lost by F1 appears as damping in the magneti-
zation dynamics [Eqs. (1) and (2)] [31,35].
We pause to comment on the behavior of μsz thus

obtained [Eq. (6)]. Typically, μsz is considered to be first
or second order in the cone angle, and thus negligibly
small. However, as discussed below, an essential new
finding is that it becomes independent of the cone angle
and large under certain conditions. For a collinear con-
figuration and vanishing gl, gzz ¼ gyz ¼ 0 results in μ̃sz ≡
μsz=ℏω → 1 [38]. Its finite dc value contributes to the
Bloch damping [Eq. (6)] [38]. For a noncollinear configu-
ration, μsz ≈ −ℏgrp _mx=ðgzz − pgyzÞ and contributes to

Gilbert damping via Is1y [Eq. (6)]. Thus, in general, we
may express the spin accumulation as μsz ¼ μsz0 þ μsz1
[46], where μsz0 is the dc value and μsz1 ∝ _mx is the linear
oscillating component. μsz0 and μsz1 contribute, respec-
tively, to Bloch and Gilbert damping.
Gilbert-Bloch dissipation.—Equations (1) and (6) com-

pletely determine the magnetic damping in F1. However,
these equations are nonlinear and cannot be captured within
our linearized framework [Eqs. (2) and (3)]. The leading
order effects, however, are linear in all but a narrow range
of parameters. Evaluating these leading order terms within
reasonable approximations detailed in the Supplemental
Material [45], we are able to obtain the Gilbert and Bloch
damping tensors α̌ and Ω̌. Obtaining the general result
numerically [45], we present the analytic expressions for
two cases covering a large range of the parameter space
below.
First, we consider the collinear configurations in the limit

of g̃l ≡ gl=gr → 0. As discussed above, we obtain μ̃sz0 ≡
μsz0=ℏω → 1 and μ̃sz1 ≡ μsz1=ℏω → 0 [Eq. (6)]. Thus,
the components of the damping tensors can be directly
read from Eq. (6) as α̃xx;yy ≡ αxx;yy=αss ¼ ly;x ¼ g0r=
ðgr þ g0rÞ ¼ g̃0r=ð1þ g̃0rÞ, and Ω̃xx;yy ≡Ωxx;yy=ðαssωÞ ¼
−lx;yμsz0=ðℏωÞ ¼ −g0r=ðgr þ g0rÞ ¼ −g̃0r=ð1þ g̃0rÞ. Here,
we defined g̃0r ≡ g0r=gr and αss ≡ ℏgrjγj=ð4πMsVÞ is the
Gilbert constant for the case of spin pumping into an ideal
spin sink [31,35]. Substituting these values in Eq. (3), we
find that the linewidth, or equivalently damping, vanishes.
This is understandable because the system we have
considered is not able to relax the z component of the
spin at all. There can, thus, be no net contribution to
magnetic damping. μsz0 accumulated in N opposes the
Gilbert relaxation via a negative Bloch contribution [38].
The latter may also be understood as an antidamping spin
transfer torque due to the accumulated spin [6].

FIG. 2. Normalized damping parameters for F1 magnetization
dynamics vs spin-valve configuration angle θ (Fig. 1). α̃xx ≠ α̃yy
signifies the tensorial nature of the Gilbert damping. The Bloch
parameters Ω̃xx ≈ Ω̃yy are largest for the collinear configuration.
The curves are mirror symmetric about θ ¼ 90°. g̃0r ¼ 1,
g̃l ¼ 0.01, Θ ¼ 0.1, ω0 ¼ 10 × 2πGHz, and ωax ¼ 1 × 2πGHz.
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Next, we assume the system to be in a noncollinear
configuration such that μ̃sz0 → 0 and may be disregarded,
while μ̃sz1 simplifies to

μ̃sz1 ¼ −
_mx

ω

ðg̃l − g̃0rÞ sin θ cos θ
g̃0rg̃l þ g̃lcos2θ þ g̃0rsin2θ

; ð7Þ

where g̃l ≡ gl=gr and g̃0r ≡ g0r=gr as above. This in turn
yields the following Gilbert parameters via Eq. (6), with the
Bloch tensor vanishing on account of μ̃sz0 → 0

α̃xx ¼
g̃0rg̃l

g̃0rg̃l þ g̃lcos2θ þ g̃0rsin2θ
; α̃yy ¼

g̃0r
1þ g̃0r

; ð8Þ

where α̃xx;yy ≡ αxx;yy=αss as above. Thus, α̃yy is θ inde-
pendent because m̂2 lies in the y-z plane and the x
component of spin, the absorption of which is captured
by α̃yy, is always orthogonal to m̂2. α̃xx, on the other hand,
strongly varies with θ and is generally not equal to α̃yy
highlighting the tensorial nature of the Gilbert damping.
Figure 2 depicts the configurational dependence of

normalized damping parameters. The Bloch parameters
are appreciable only close to the collinear configurations on
account of their proportionality to μsz0. The θ range over
which they decrease to zero is proportional to the cone
angle Θ [Eq. (6)]. The Gilbert parameters are described
sufficiently accurately by Eq. (8). The linewidth [Eq. (3)]
normalized to its value for the case of spin pumping into a
perfect spin sink has been plotted in Fig. 3. For low g̃l, the
Bloch contribution partially cancels the Gilbert dissipation,
which results in a smaller linewidth close to the collinear
configurations [38]. As g̃l increases, the relevance of Bloch
contribution and μsz0 diminishes, and the results approach

the limiting condition described analytically by Eq. (8).
In this regime, the linewidth dependence exhibits a maxi-
mum for either collinear or orthogonal configuration
depending on whether g̃l=g̃0r is smaller or larger than unity.
Physically, this change in the angle with maximum line-
width is understood to reflect whether transverse or
longitudinal spin absorption is stronger.
We focus now on the case of very low g̃l which can be

realized in structures with electrically insulating magnets.
Figure 4 depicts the linewidth dependence close to the
collinear configurations. The evaluated points are marked
with stars and squares, whereas the lines smoothly connect
the calculated points. The gap in data for very small angles
reflects the limited validity of our linear theory, as dis-
cussed in the Supplemental Material [45]. As per the
limiting case g̃l → 0 discussed above, the linewidth should
vanish in perfectly collinear states. A more precise state-
ment for the validity of this limit is reflected in Fig. 4 and
Eq. (6) as g̃l=Θ2 → 0. For sufficiently low g̃l, the linewidth
changes sharply from a negligible value to a large value
over a θ range approximately equal to the cone angle Θ.
This shows that systems comprising magnetic insulators
bearing a very low g̃l are highly tunable in regard to
magnetic or spin damping by relatively small deviation
from the collinear configuration. The latter may be accom-
plished electrically by employing magnetoelectric material
[41] for F2 or via current driven spin transfer torques
[6,9,47].
Discussion.—Our identification of damping contribu-

tions as Gilbert-like and Bloch-like [Eq. (6)] treats μsz as
an independent variable that may result from SHE, for
example. When it is caused by spin pumping current and
μsz ∝ ω, this Gilbert-Bloch distinction is less clear and
becomes a matter of preference. Our results demonstrate
the possibility of tuning the magnetic damping in an active

FIG. 4. Normalized FMR linewidth of F1 for very small g̃l.
The squares and circles denote the evaluated points while the
lines are guides to the eye. The linewidth increases from being
negligible to its saturation value as θ becomes comparable
to the average cone angle Θ. g̃0r ¼ 1, ω0 ¼ 10 × 2π GHz, and
ωax ¼ 1 × 2π GHz.

FIG. 3. Normalized ferromagnetic resonance (FMR) linewidth
of F1 for different values of the longitudinal spin conductance
g̃l ≡ gl=gr of NjF2 bilayer. The various parameters employed
are g̃0r ≡ g0r=gr ¼ 1, Θ ¼ 0.1 rad, ω0 ¼ 10 × 2π GHz, and ωax ¼
1 × 2π GHz. gr and g0r are the spin-mixing conductances of F1jN
and NjF2 interfaces, respectively. Only the spin pumping-
mediated contribution to the linewidth has been considered
and is normalized to its value for the case of spin pumping into
a perfect spin sink [31].
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magnet via the magnetization of a passive magnetic layer,
especially for insulating magnets. In addition to controlling
the dynamics of the uniform mode, this magnetic “gate”
concept [48] can further be employed for modulating the
magnon-mediated spin transport in a magnetic insulator
[43,44]. The anisotropy in the resulting Gilbert damping
may also offer a pathway toward dissipative squeezing [49]
of magnetic modes, complementary to the internal
anisotropy-mediated “reactive” squeezing [50,51]. We also
found the longitudinal accumulated spin, which is often
disregarded, to significantly affect the dynamics. This con-
tribution is expected to play an important role in a wide
range of other phenomena such as spin-valve oscillators.
Conclusion.—We have investigated the angular modu-

lation of the magnetic damping in a free layer via control of
the static magnetization in the fixed layer of a spin-valve
device. The damping can be engineered to become larger
for either collinear or orthogonal configuration by choosing
the longitudinal spin conductance of the fixed layer smaller
or larger than its spin-mixing conductance, respectively.
The control over damping is predicted to be sharp for spin
valves made from insulating magnets. Our results pave the
way for exploiting magneto-damping effects in spin valves.
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