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Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity
with decreasing scales, allowing—eventually—the abstract model of homogeneous and isotropic
turbulence to be relevant. We show here that the opposite is true for superfluid 4He turbulence in
three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales,
becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is
elucidated and supported by theory and simulations.
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All turbulent flows in nature and in laboratory are aniso-
tropic on the energy injection scales [1]. Nevertheless, the
model of homogeneous and isotropic turbulence (HIT) has
been shown to be highly successful in predicting the
statistical properties of turbulence on scales much smaller
than stirring scales (but still larger than the dissipative
scale). The reason for this lies in the nature of the nonlinear
terms of the equations of fluid mechanics that tend to
isotropize the flow upon cascading energy to smaller scales.
Eventually, at small enough scales, the flow becomes
sufficiently isotropic to allow the application of HIT [2].
In the present Letter, we show that in turbulent superfluid
4He in a channel with a temperature gradient, the opposite
phenomenon takes place: the flow becomes less and less
isotropic upon decreasing the scales. Eventually, the flow
becomes quasi-two-dimensional with interesting and
unusual properties as detailed below. A possible way to
account for this difference is furnished by the two-fluid
model of superfluid 4He turbulence [3–5]. We denote by us
and un the superfluid and normal-fluid velocities, respec-
tively. In counterflowgeometry,with a temperature gradient
directed along the channel, the superfluid flows towards the
heater and the normal fluid away from the heater.
Importantly, there exists a mutual friction force f ns between
these two components [4–9], proportional to the difference
in velocities, i.e., f ns ∝ ðun − usÞ. As long as the fluctua-
tions between these two velocities are correlated, this force
remains small. Upon the loss of correlation, this force
becomes large and will lead to a suppression of the
corresponding fluctuations. Consider then two types of
velocity fluctuations, one elongated along the channel and
the counterflow, and the other orthogonal to them; see
Fig. 1. Due to the mean flow in opposite directions, the
velocity fluctuations oriented orthogonally will have a short

overlap time and will decorrelate quickly, whereas the
velocity fluctuations along the counterflow will remain
correlated for a longer time. The result will be a strong
suppression of the former with respect to the latter. This will
eventually lead to a turbulent flow in which the fluctuations
consist mostly of the streamwise component, while the
energy is concentrated in the plane orthogonal to the
counterflow direction. The rest of this Letter will elaborate
this picture by using an analytical approach and using direct
numerical simulations (DNS).
The basic equations.—The two-fluid model describes

superfluid 4He of density ρ ¼ ρs þ ρn as a mixture of two
interpenetrating fluid components: an inviscid superfluid,
ρs, and a viscous normal fluid, ρn. The fluid components are
coupled by amutual friction force, mediated by the tangle of

FIG. 1. Schematics of the superfluid 4He channel counterflow.
The normal-fluid (solid red lines) and the superfluid eddies (blue
dashed lines) are swept by the corresponding mean velocities Un
andUs away and towards the heater, respectively. The streamwise-
elongated eddies have longer overlap time than the cross-stream-
elongated eddies. Right inset: Volume rendering of the squared
superfluid velocity components u2s;y (top) and u2s;x (bottom). The
us;z (not shown) is similar to the y component. The velocity
magnitude is color coded, with red denoting positive and blue
denoting negative values.
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quantum vortices [4–8] of a core radius a0 ≈ 10−8 cm and a
fixed circulation κ ¼ h=M ≈ 10−3 cm2=s, where h is
Planck’s constant and M is the mass of the 4He atom
[10]. A complex tangle of these vortex lines with a typical
intervortex distance [5] l ∼ 10−4–10−2 cm is a manifesta-
tion of superfluid turbulence.
We employ the coarse-grained equations for counterflow

[11–15]. They have a form of two Navier-Stokes equations
for the velocity fluctuations ujðr; tÞ of the normal fluid
(j ¼ n) and the superfluid (j ¼ s):

� ∂
∂tþðujþUjÞ ·∇

�
uj−

∇pj

ρj
¼ νjΔujþ f jþφj; ð1aÞ

coupled by the friction f j in the minimal form [16]:

f s≃Ωsðun−usÞ; f n≃Ωnðus−unÞ; Ωs¼ ακL ð1bÞ
and Ωn ¼ ρsΩs=ρn. The mutual friction frequency Ωs
depends on the temperature-dependent dimensionless
mutual friction parameter αðTÞ and on the vortex line
density (VLD) L. In Eq. (1), Uj are the mean velocities and
pj are the pressures of the normal-fluid and the superfluid
components. The kinematic viscosity of the normal fluid is
νn ¼ η=ρn, with η being the dynamical viscosity of 4He
[17]. The energy sink in the equation for the superfluid
component, proportional to the effective superfluid viscos-
ity, νs, accounts for the energy dissipation at the intervortex
scale l, due to vortex reconnections and energy transfer to
Kelvin waves [5,11,18].
The large-scale motion in the thermal counterflow is

sustained by the temperature gradient, created along the
channel. Here we use the fact that the center of the channel
flow at large enough Reynolds numbers can be considered
as almost space-homogeneous [19]. To simplify the analy-
sis, we consider homogeneous turbulence under periodic
boundary conditions and mimic the steering of turbulence
at large scales by random forcesφj. Equations (1a) and (1b)
describe the motion of two fluid components in the range of
scales between the forcing scale and the intervortex
distance. Ideally, to accurately describe dynamics of the
system, a set of closed coupled equations for us, un, and L
should be solved. However, currently there is no consensus
on what equations must be used for the VLD and whetherL
is the only tangle property relevant for the vortex dynamics
[20–23]. Here we use Ωs in Eq. (1b) as a control parameter,
which is a reasonable approximation for homogeneous
turbulence under periodic boundary conditions. Note that
numerical simulations of Eqs. (1a) and (1b) were used to
successfully predict the enhancement of small-scale inter-
mittency in the mechanically driven superfluid 4He [11],
recently confirmed experimentally in Ref. [24]. Similarly,
the energy spectra of counterflow turbulence, analytically
derived [15] using Eq. (1), are in a good agreement with the
experiment of Refs. [25,26].

Statistics of anisotropic turbulence.—The most general
description of homogeneous superfluid 4He turbulence at
the level of second-order statistics can be done in terms of
the three-dimensional (3D) Fourier spectrum of each
component and the cross-correlation functions:

ð2πÞ3δðk − k0ÞF αβ
ij ðkÞ ¼ hvαi ðkÞv�βj ðk0Þi; ð2Þ

where νjðkÞ is the Fourier transform of ujðrÞ, the indices i
and j refer to the fluid components, the vector indices α; β ¼
fx; y; zg denote the Cartesian coordinates, and � stands for
complex conjugation. In the following, we choose the
counterflow velocity, Uns ¼ Un − Us along the x̂ direction
as depicted in Fig. 1. Next, we denote the trace of any tensor
according to F jjðkÞ≡P

αF
αα
jj ðkÞ. With this notation, the

kinetic energy density per unit mass Ej reads

Ej ≡ 1

2
hjujðrÞj2i ¼

1

2

Z
F jjðkÞd3k=ð2πÞ3: ð3Þ

Due to the presence of the preferred direction, defined by
Uns, the counterflow turbulence has an axial symmetry
around the x̂ axis. Then F ijðkÞ depends only on the two

projections kk ¼ kx and k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
of the wave vector

k, being independent of the angle ϕ in the plane, orthogonal
to Uns. This allows us to define a set of two-dimensional
(2D) objects that still contain all the information about
second-order statistics of the counterflow turbulence:

Fijðkk; k⊥Þ≡ k⊥
4π2

F ijðkk; k⊥Þ: ð4aÞ

Another way to represent the same information is to
introduce a polar angle, cosðθÞ ¼ ðk;UnsÞ=jkjjUnsj, and
to use spherical coordinates:

F̃ijðk; θÞ≡ k
4π2

F ijðk cos θ; k sin θÞ: ð4bÞ

Physical origin of the strong anisotropy.—The physical
origin of the strong anisotropy in the counterflow turbulence
is best exposed by considering the balance equation for the
2Denergy spectra F̃nnðk; θÞ, F̃ssðk; θÞ. For that, we start with
Eq. (1), follow the procedure described in Ref. [15], and
average the resulting equations for the 3D spectra over the
azimuthal angle φ. Finally, for the normal-fluid component,
we get

∂F̃nnðk; θ; tÞ
∂t þ divk½εnðkÞ� ¼ −Dmf

n ðk; θÞ −Dkv
n ðk; θÞ;

Dmf
n ðk; θÞ ¼ Ωn½F̃nnðk; θÞ − F̃nsðk; θÞ�;

Dkv
n ðk; θÞ ¼ 2νnk2F̃nnðk; θÞ; ð5Þ

where divk½εjðkÞ� is the transfer term due to inertial non-
linear effects, and Dmf

n ðk; θÞ describes the rate of energy
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dissipation by themutual friction, whileDkv
n ðk; θÞ stands for

the rate of dissipation by the kinematic viscosity. A similar
equation is obtained for the superfluid component by
replacing “n”with “s” everywhere. For a qualitative analysis
of the origin of the anisotropy in our system, it is important to
develop a closure of the cross-correlation function F̃nsðk; θÞ
inDmf

j ðk; θÞ in terms of the spectral properties of each fluid
component and of the counterflow velocity.
According to Ref. [12],

F̃nsðk; θÞ ¼ AB=½B2 þ ðk · UnsÞ2�: ð6Þ

Here A ¼ ΩsF̃nnðk; θÞ þ ΩnF̃ssðk; θÞ and B can be approxi-
mated as B ¼ Ωn þ Ωs, as shown in Ref. [15]. We further
simplify F̃nsðk; θÞ in Eq. (6) by noting [15] that when two
components are highly correlated, the cross-correlation
may be accurately represented by the corresponding energy
spectra. For wave numbers where the components are not
correlated, as is quantified by the decorrelation function
Dðk; θÞ [12], F̃nsðk; θÞ is small, and the accuracy of its
representation is less important. We therefore get a
decoupled form of the cross-correlation:

F̃nsðk; θÞ ¼ F̃jjðk; θÞDðk; θÞ; ð7aÞ

Dðk; θÞ ¼
�
1þ

�
kUns cos θ
Ωn þ Ωs

�
2
�
−1
; ð7bÞ

and finally determine the rate of energy dissipation due to
mutual friction:

Dmf
j ðk; θÞ ¼ ΩjF̃jjðk; θÞ½1 −Dðk; θÞ�: ð7cÞ

Equations (7a)–(7c) are the central analytical result of
this paper.
The impact of Uns on the anisotropy follows from the

closure (7c). Indeed, for small k or even for large k with k
almost perpendicular to Uns (i.e., cos θ ≪ 1), Dðk; θÞ ≃ 1,
the normal-fluid and superfluid velocities are almost fully
coupled, and the dissipation rate is small: Dmf

j ðk; θÞ ≪ Ωj.
In this case, the mutual friction does not significantly affect
the energy balance, and we expect the energy spectrum
F̃jjðk; θÞ to be close to the Kolmogorov 1941 prediction
EK41ðkÞ ∝ k−5=3 for both components. For large k and with
cos θ ∼ 1, the velocity components are almost decoupled
Dðk; θÞ ≪ 1, and the mutual-friction energy dissipation is
maximal: Dmf

j ðk; θÞ ≈ΩjF̃jjðk; θÞ. This situation is similar
to that in 3He with the normal-fluid component at rest [13].
In such a case, we can expect that the energy dissipation by
mutual friction strongly suppresses the energy spectra,
much below EK41ðkÞ.
Combining all these considerations, we expect the

energy spectra F̃jjðk; cos θÞ to become more anisotropic

with increasing k, with most of the energy concentrated in
the range of small cos θ, i.e., in the orthogonal plane.
Numerical results.—Direct numerical simulations of the

coupled Eqs. (1a) and (1b) were carried out using a fully
dealiased pseudospectral code with a resolution of 2563

collocation points in a triply periodic domain of sizeL ¼ 2π.
To reach a steady-state flow, velocity fields of the normal-
fluid and superfluid components are stirred by two inde-
pendent random Gaussian forces φs and φn with the force
amplitudes jφj ¼ 0.5 for both components, localized in the
band kφ ∈ ½0.5; 1.5�. The time integration is performed
using a second-order Adams-Bashforth scheme with the
viscous term exactly integrated.
We have decided to focus on the temperature

T ¼ 1.85 K, at which the densities and viscosities of the
normal-fluid and superfluid components are close: ρs=ρn ¼
1.75 and νs=νn ¼ 1.07. The mutual friction parameter for
this temperature is α ¼ 0.18. The simulations were carried
out with both the normal-fluid and superfluid viscosity
νn ¼ νs ¼ 0.003. Other parameters of the simulations were
chosen based on the relevant dimensionless relations: the
Reynolds numbers and the normal-fluid turbulent intensity
w: Rej ¼ ðujTÞð=νjk0Þ, w ¼ Uns=unT. Here ujT ¼ ffiffiffiffiffiffiffiffiffiffi

huj2i
p

is
the root mean square (rms) of the turbulent velocity
fluctuations, and k0 ¼ 1 is the outer scale of turbulence.
To emphasize the importance of the counterflow, we
compare the results with the simulations for the so-called
coflow with the rest of the parameters being the same. In the
coflow, the two components of the mechanically driven 4He,
being coupled by themutual friction force, move in the same
direction with the same mean velocities, Uns ¼ 0. The
statistics in the coflow configuration is known to be similar
to that of classical isotropic turbulence [14,27–29]. In our
simulations, the values of the Reynolds numbers in the
counterflow are Ren ¼ 1051 and Res ¼ 1056, while in the
coflow, Ren ¼ 1179 and Res ¼ 1181. The rms velocities of
both components in both flows are usT ¼ unT ¼ 3.5. The
dimensionless values of the mutual friction frequencyΩs ¼
20 and the counterflow velocity Uns ¼ 15.4 correspond to
the case with both components strongly turbulent and
strongly coupled. The results on the temperature and Ωs
dependence of the energy spectrawill be reported elsewhere.
The flow conditions were controlled by the simulations of
the uncoupled equations without counterflow (Uj¼Ωj¼0),
which represent here the classical hydrodynamic isotropic
turbulence (CHT).
The energy spectra are influenced by the viscous dis-

sipation, by the dissipation due to mutual friction, and by
the counterflow-induced decoupling. To clarify the role of
each of these factors, we first ignore the expected
anisotropy and compare in Fig. 2(a) the normal-fluid
and superfluid energy spectra EnnðkÞ and EssðkÞ and the
cross-correlation EnsðkÞ, integrated over a spherical surface
of radius k, i.e., over all directions of vector k:
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EijðkÞ ¼
Z

F ijðkÞ
dϕd cos θ
ð2πÞ3 : ð8Þ

The corresponding normalized cross-correlation functions

RðkÞ ¼ 2EnsðkÞ=½EnnðkÞ þ EssðkÞ� ð9Þ

are shown in Fig. 2(b). The effect of viscous dissipation is
clearly seen in the spectra of the uncoupled components,
corresponding to CHT (marked “CHT,” black lines). The
spectra almost coincide, since at T ¼ 1.85 K the viscosities
are close. In the coflow, the strongly coupled components
are well correlated at all scales and move almost as one
fluid. Note the additional dissipation due to mutual friction,
leading to further suppression of the spectra compared to
the uncoupled case. The presence of the counterflow
velocity leads to a sweeping [12] of the two components’
eddies in opposite directions by the corresponding mean
velocities. The result is the decorrelation of the compo-
nents’ turbulence velocities, especially at small scales, for
which the overlapping time is very short, see Fig. 2(b). The
dissipation by mutual friction is very strong in this case,
with both Ω and the velocity difference being large, leading
to very strongly suppressed spectra, with EnnðkÞ ≈ EssðkÞ.
This behavior was predicted by the theory [15], based
on the assumption of spectral isotropy. However, the
spherically integrated spectra and cross-correlations
cannot reveal any properties connected to the anisotropic
action of the mutual friction force. To account for the
spectral anisotropy, we plot in Fig. 2(c) the normalized 2D
cross-correlations

R̃ðk; θÞ ¼ 2F̃nsðk; θÞ=½F̃nnðk; θÞ þ F̃ssðk; θÞ�: ð10Þ

Given the discrete nature of the k space in DNS, we average
them over three bands of wave numbers. Leaving aside
k ≈ k0, influenced by the forcing, we average R̃ðk; θÞ over
the k ranges 10 ≤ k < 20, 20 ≤ k < 60, and 60 ≤ k ≤ 80.

The first observation here is that the cross-correlation
for the coflow are isotropic at all scales (see the thin
horizontal lines, marked “coflow”). On the other hand, in
the counterflow, the cross-correlations are largest for cos θ ≈
0 and fall off very fast with decreasing angle, slower for
small k (red lines, labeled k10) and faster as k becomes larger
(green and blue lines, k20 and k60, respectively). Such a
strong decorrelation of the components velocities leads to an
enhanced dissipation by mutual friction in the counterflow
direction, such that most of the energy is contained in the
narrow range cos θ ≲ 0.1, near the plane orthogonal to Uns.
Indeed, the superfluid energy spectrum Fssðkk; k⊥Þ, shown
in Fig. 3(a), is strongly suppressed in the kjj direction, while
it decays slowly in the orthogonal plane. A similar phe-
nomenon of the creation of quasi-2D turbulence is observed
in a strongly stratified atmosphere [30–32] and in rotating
turbulence [33–35], where there exists a preferred direction
defined by gravity or by a rotation axis. The difference
between these examples and the present counterflow lies in
the nature of the velocity field. The leading velocity
components in the classical flows are in a plane orthogonal
to the preferred direction. Moreover, at small scales the
isotropy is restored [31,32]. On the contrary, in 4He counter-
flow, the dominant velocity component is oriented along the
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counterflow direction, with the anisotropy becoming
stronger with decreasing scales, see Fig. 3(b). Here we plot
the tensor components of the spherical spectra as the ratios

Kα
j ðkÞ≡ 3Eαα

jj ðkÞ=EjjðkÞ: ð11Þ

The factor 3 was introduced to ensure that for isotropic
turbulence, Kα

j ðkÞ ¼ 1. Expectedly, the coflow (the almost
horizontal lines) is isotropic at all scales, except for the
smallest wave numbers. On the other hand, for the counter-
flow turbulence, the contribution of the Kx

jðkÞ component
(shown by red lines) is dominant and monotonically
increases with k from the isotropic level Kx

jðk0Þ ≈ 1 to the
maximal possible level, Kx

jðkÞ ≈ 3. Therefore, the small-
scale counterflow turbulence consists mainly of vxjðkÞ
velocity fluctuations. The contribution of vyj and vzj fluctua-
tions for k≳ 10 is negligible. Summarizing Fig. 3, the
leading contribution to the spectra of small-scale counterflow
turbulence comes from the turbulent velocity fluctuations
with only one streamwise projection that depends on the two
cross-stream coordinates fy; zg: uxðy; zÞ. Such turbulence
can be visualized as narrow jets or thin sheets with velocity,
oriented along the counterflow and randomly distributed in
the orthogonal plane. Indeed, the velocity components uys
(shown in Fig. 1) and uzs have only large-scale structures,
while uxs has elongated structures at various scales.
Summary.—The energy spectra of the superfluid 4He

counterflow turbulence become more anisotropic upon
going from large scales toward scales about the intervortex
distance. This strong anisotropy distinguishes it from the
classical turbulent flows that become more isotropic as the
scale decreases. Most of the turbulent energy becomes
concentrated in the plane, orthogonal to the counterflow
direction. Furthermore, contrary to classical quasi-2D
turbulent flows in rotation or in stratified configurations,
where dominant velocity components lie in the same plane,
the only surviving velocity component at small scales is
preferentially oriented along the counterflow direction. The
selective suppression of the orthogonal velocity fluctua-
tions has its origin in the strong anisotropy of the energy
dissipation by mutual friction, resulting from the angular
dependence of the components’ cross-correlation. The
anisotropy of the energy spectra can be measured once
information from different spatial positions is available.
One can think of using particle imaging velocimetry [36] to
detect the velocity field in the streamwise–wall-normal
plane, a pair of very small second sound sensors, placed at
some separation in the wall-normal direction [37], or a
particle’s visualization at separate streamwise locations
[26,38]. Such methods allow us to measure the velocity
fluctuations in different directions and to reconstruct the
energy spectra along and across the counterflow direction.
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