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We characterize topological phases in photonic lattices by unveiling a formal equivalence between the
singular value decomposition of the non-Hermitian coupling matrix and the diagonalization of an effective
Hamiltonian. Our theory reveals a relation between topological insulators and directional amplifiers. We
exemplify our ideas with an array of photonic cavities which can be mapped into an AIIl topological
insulator. We investigate stability properties and prove the existence of stable topologically nontrivial
steady-state phases. Finally, we show numerically that the topological amplification process is robust

against disorder in the lattice parameters.
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Introduction.—Topological photonics builds on ideas
from electronic band theory [1], such as the classification
of topological phases based on symmetries [2-5]. After
Haldane and Raghu’s pioneering work [6], early realiza-
tions of topological phases were implemented in photonic
spin Hall systems [7]. In the last years topological phases
have been investigated in photonic lattices by breaking
time-reversal symmetry with magnetic fields [8—12] or
periodic drivings [13-18]. Analogous ideas have been
explored in optomechanical systems [19-23] or even in
purely vibronic or mechanical systems [24-26], as well as
in spin-cavity setups [27,28].

Photonic lattices present distinctive features with respect
to their electronic counterparts like dissipative decay or
pumping (loss or gain), as well as coherent driving [29,30].
The breaking of time-reversal invariance that is a typical
ingredient of topological phases leads to nonreciprocal
photon transport [31] and topological quantum fluctuations
[32]. Loss or gain in photonic lattices leads to non-
Hermitian coupling matrices in which the direct application
of topological insulator theory is highly nontrivial.
Theoretical works have shown zero-energy edge states in
non-Hermitian systems [33-36], and even extended topo-
logical band theory to non-Hermitian lattices [37,38].
Theoretical work has so far focused on topological proper-
ties of eigenvectors of non-Hermitian matrices. Recent
experiments have detected photonic zero edge modes in the
transmission properties of photonic lattices with a chiral
symmetry originated by a bilattice structure [39-42], and
shown nonreciprocal transmission induced by a synthetic
magnetic field in an optomechanical system [43].

In this Letter we present a novel approach to the study
of topological photonic phases that focuses on the singular
value decomposition (SVD) of the non-Hermitian coupling
matrix, H. Our approach establishes a link between
the existence of nontrivial topological phases and the
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amplification of a coherent input signal. We show that
the SVD of H is formally equivalent to the diagonalization
of an effective Hamiltonian, H, which possesses an
intrinsic chiral symmetry and potentially also a set of
topological protected edge states. The latter govern the
response to a coherent drive and they lead to an exponential
amplification effect. Our formalism allows us to exploit the
existing classification of Hermitian lattices into symmetry
classes [2-5] and predict parameter regimes in which a
photonic lattice acts as an amplifier. We present an example
consisting of an array of coupled photonic cavities and we
find topologically nontrivial phases that are stable over a
wide range or parameters. Numerical calculations show that
our scheme is topologically protected against disorder.
Finally, we discuss a physical implementation of our ideas
in a photonic lattice subject to periodic drivings.

Dissipative photonic lattice.—We consider a dissipative
lattice of local photonic modes with annihilation and
creation operators a; and a;, respectively, whose density
matrix operator dynamics is described by (7 = 1)

d
L(p) = ZFE-I)(Zajpaj —aja;p - paja;)
jil
+ ZF;I;)(Za;/)a, - ala}p —pa,a-j‘:)
Jl

—i {;Gﬂa;al,p} —i {;(e;aj + eja;),p:| (1)

rt
J
photon losses and incoherent pumping, respectively.

Diagonal terms, Fﬁ) and T'\")

;i » appear naturally because of
local photon losses or gain, being the latter induced by an
active medium or illumination with an incoherent source.

Nondiagonal dissipative terms (j # ) can be controlled by

7) andI” Ef ) are Hermitian matrices that describe collective
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using additional degrees of freedom (for example, auxi-
liary modes [19,21-23]). G ; are coherent couplings describ-
ing the tunneling of photons between cavities. Finally, the
last term describes a resonant coherent drive with a site-
dependent complex amplitude, €;. The latter can be induced
by direct illumination of the photonic lattice with a coher-
ent field.

We define the non-Hermitian matrix H = I" — iG, where

= Fﬁf ) - F;;l), which allows us to express the evolution

of the coherences, a; = (a;),
N
&=y Hja +é), (2)
=1

with e} = ie;. Equation (2) is a closed set of linear
equations that exactly describes the evolution of field
coherences in the lattice. The steady-state solution o} is
found by solving &; = 0, and it can be expressed in terms of

the SVD, H = USV', where U and V are unitary matrices
and S is a diagonal matrix, S,,, = 5,0,,, with s, >0,

af = —Zvjns;IU}‘nd. (3)
n,l

Small values of s, give a larger contribution to o’
Mapping to an effective Hamiltonian.—Our work relies

on the observation that the SVD of H is equivalent to the

diagonalization of an effective Hamiltonian H,

H=HQ®oc " +H @0, (4)

where we have introduced ladder spin operators acting on
an auxiliary spin-1/2, {|1),|J)}. We define singular
vectors u™), (), corresponding to the columns of U

(n) _ (n) _
and V, up = Uijn, vy = Vips

Hu" @ 1) £ 0 @ [1)) = £s,(u" @ 1) £ v @ |)).
(5)

The eigenvalues of H come in pairs +s,,, due to the chiral
symmetry,

(1 ®0)H(I ®0;) = -H, (6)

which exists by the very definition of H, independently of
the physical symmetries of the lattice.

The mapping H — ‘H allows us to use the theoretical
machinery of topological band theory (TBT) [2-5] and
classify topological steady states in translational invariant
lattices. We consider periodic boundary solutions and
express H in a plane-wave basis,

H(k) =T (k)o, + G(k)o,, (7)

- -

where I'(k) and G(k) are real functions due to the
Hermiticity of the coupling matrices. TBT relies on

symmetry operators 7 (time reversal) and C (charge
conjugation), written like 7 = UK, C = U-K, where
U7y, Uc are unitary matrices and K is the complex
conjugation operator (K> =1, KiK = —i). Condition
UrUc x o, must be fulfilled to account for the chiral
symmetry expressed in Eq. (6). Time-reversal and/or
charge conjugation symmetries are fulfilled if there exist
unitary matrices Uy, Ue, such that TH(k)T~! = H(—k)
and/or CH(I;)C" = —H(—k), respectively. We find the
following possible symmetry classes [3]: (i) F(l_c))2+
G(k)? # T(=k)? + G(—k)? > AIII class (no T, C sym-
metry). (i) Vectors (I'(k), —G(k)) and (I'(~=k), G(=k)) are
related by a rotation with angle # on the x-y plane —
BDI class (T? = C? = 1) with Uy = exp(ic,0/2), Ue =
explic, (0 + x)/2]. (iii) T(k) = T'(=k), G(k) = G(—k) —
CI class (T* = 1, C* = —1) with Uy = 6,, Uc = o,. This
is the case of real couplings matrices, I';; = I';, G;; = Gy;.
(iv) T(k)=-I(=k), G(k)=—-G(—=k)— DIIl class
(T? = -1, C* = 1) with Uy = 6,, Uc = o,. This classi-
fication allows us to predict the existence or not of edge
states. Whereas the chiral symmetry in Eq. (6) is always
fulfilled by construction, the physical symmetries of the
coupling matrices I', G, determine the symmetry class
above. For example, if we have real dissipative couplings
['j, but complex photon tunneling terms, we get

G(l_c’) #* G(—l_c'), such that the system falls into the AIII
symmetry class.

Edge singular vectors and amplification.—Nontrivial
topological properties of H have dramatic consequences
in the steady state. In particular, TBT predicts the existence
of zero-energy eigenstates of H in nontrivial topological
phases (see, for example, Ref. [44]), which in turn implies
the appearance of zero-singular values, s, that are sepa-
rated by a gap from the bulk singular values, s,,, . The
characterization of topological insulators in terms of
symmetry classes (see Refs. [2-5]) can be used to predict
the existence of those edge states. From TBT applied to H,
we also expect the emergence of right or left edge singular

vectors, uﬁ-"E) / 1;5-"5), whose amplitude is localized at the

edges of the lattice.

We assume for simplicity that there is a single zero-
singular value np = N, corresponding to a single zero-
energy state of H (as is the case in the one-dimensional
model below). In a finite size lattice, this typically implies
that sy o e~L/%, that is, the edge singular value decays
exponentially with the length of the system L divided by a
typical length, y. The sum in Eq. (3) can thus be
approximated by o} ~ — > vﬁ-N)s;,luEN)*e} That expres-
sion can be simplified further in translationally invariant
systems, in which the parity inversion operator, I1, fulfills
that TIHTI = HT. In this case we find the condition

V = I1U*, which leads to
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o = —Hu}N)*s;,l Zuﬁm*e;. (8)
]

We have arrived at our main result: the existence of edge
states of H leads to the amplification of a coherent drive.
Equation (8) implies that o} is amplified by a factor
1/sy  e!/%, and it is also proportional to the overlap

N ,
between 6} and u§ ). Furthermore, field coherences aj-s are

distributed following the parity inverted singular edge-state

vector, Huﬁ-N). This implies that amplification is a direc-

tional process triggered by a coherent drive in one of the
system’s edges and leading to large values of the field in the
opposite edge. By measuring the coherent component of
the field in the photonic cavity, for example, by means of
homodyne detection methods, the existence of a singular
edge state can be experimentally proved.

One-dimensional example: Nonreciprocal photonic
chain.—We consider an array of cavities with nearest-
neighbor dissipative couplings leading to

Uy = (rp —2t4)0; + t40, 11 + tabyj—1
Gy = tcei¢5l,j+1 + tce_i¢5l,j—1- )

This photonic lattice is related to the Hatano-Nelson model
[45,46]. Dissipative terms with rate f; couple nearest
neighbors. The diagonal element I' =y, — 27, is para-
metrized in terms of y,, which determines the net incoher-
ent pumping of photons into the lattice. Finally, coherent
couplings couple nearest-neighbor sites with complex
tunneling phase ¢. The effective Hamiltonian in the
plane-wave basis is

H(k) =[r,—2t,+ 2t cos(k)|o, + 2t cos(k +p)o,. (10)

The cases ¢ = 0, 7 belong to the CI class. The generic case
with ¢ # 0 belongs to the AIIl class and we can expect
nontrivial topological phases to appear [5]. We characterize
the properties of Hamiltonian (10) by using the winding
number v as a topological invariant [47]. For this we write
H(k) =T(k)o, + G(k)o,, such that v =1 (nontrivial
topological phase) if the ellipse formed by the two-dimen-
sional vector (I'(k), G(k)) encompasses the origin as k
varies from O to 2z, and v = 0 otherwise. Without loss of
generality we can assume 0 < ¢ < z. The condition for
v =1 reads

2t,(1 =sing) <y, < 2ty(1 +sing), (11)

and 7. # 0. Since the case ¢ =0 and/or y, =0 do not
admit nontrivial solutions, our model requires complex
photon tunneling couplings together with incoherent pump-
ing in the original photonic lattice. A numerical calculation
confirms the appearance of zero singular value modes,
see Fig. 1.

0.8 : :
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FIG. 1. Purple (orange) line is the absolute value of the n = N
right (left) singular vector of the 1D model (9) with ¢, =t;, = 1,
¢ =r/3, N=>50. Dotted lines: y, =0 (topologically trivial
case). Continuous lines: y, = 1 (topologically nontrivial case).
Inset: Singular values for y, =0, 1, 1.5, 2.0, showing the
emergence of a zero singular value state at ny = N.

We focus now in the case ¢ = n/2, t; = t., which can be
mapped into the Su-Schriefer-Heeger (SSH) model [48].
Equation (11) implies that nontrivial topological phases
exist if 0 <y, <4z, Here we can analytically find
expressions for the edge state wave functions which can
be written in terms of the localization length [49],
&l =—In|1—-((y,)/(2ty)]|. In the following we assume
the limit N > &> 1, to simplify the discussion, such

that the edge singular vector is uth) = 2/Ee7I/%, with

j
singular value sy = 2y,e~/¢, leading to

)

1 .
5 = _7eN/ée—<N+1—-/)/5Ze"/‘f€}. (12)
},p§ l

The signal is thus directionally amplified by coherently
driving the left end of the chain such that photon density
accumulates at the opposite end.

Stability phase diagram.—We address now the stability
of the steady state. First, we define fluctuations @; by the
relation a; = ajs + aj, and consider the correlation matrix

in the steady state, M;; = (c‘ljd,), which evolves like

My = Hi My +> HyMy +200. (13)
j/ l/

Together with Eq. (2), Eq. (13) provides us with a complete
characterization of the steady state. M; converges to a
noninfinite value provided that %i(4,) < 0. Whereas the
steady state of the coherences can be analyzed by means of
the SVD, see Eq. (3), fluctuations are directly governed by
eigenvalues of the non-Hermitian matrix H.

Our one-dimensional example (9) can be exactly dia-
gonalized [50] and we can seek topologically nontrivial
stable regimes. The eigenvalues of H with periodic
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FIG. 2. Singular value gap, A; = sy_; — sy, for the model
defined by Eq. (9), N = 100. Dashed lines separate topological
insulator (TI) and normal (N) phases. The intersection, TI-S, is
the region of stable nontrivial topological phases. Continuous
lines separate stable (S) and unstable (U) phases. (a) ¢ = /2,
f. =1 and different values of 7, and y,. (b) 7, =1, =1 and
different values of ¢ and y,,.

boundary conditions are A(k) =y, — 2t, + 2t,cos(k)+
2it.cos(k + ¢). Condition R[A(k)] <O requires that
¥p <0, which is not compatible with the existence of a
nontrivial topological phase. However the situation radi-
cally changes when we consider open boundary conditions.
Here an exact solution is also available, leading to a set of
n=1,...,N eigenvalues of H,

Ay = Yp— 2ty

+ 2\/ (itee' — 1)(it,e"® — 1) cos (N”J’: 1). (14)

Assume that 7, = t,, then stable solutions exist if

—4\/Cos ). (15)

An overlapping region between the stable and nontrivial
topological regimes defined by both conditions Egs. (15) and
(11) can be found as long as |cos(¢)| < (=14+/5)/2~0.62.
Our model thus requires a threshold minimum value of ¢ for
stable nontrivial topological phases to exist. Numerical
calculations in a wide range of parameters confirm the
existence of stable topologically nontrivial phases in the
steady-state phase diagram, see Fig. 2.

Topological protection.—We check the robustness of
topological amplification by adding a diagonal disorder

p < 2td(1

term to the Hermitian coupling matrix G, 6G;; = 6w;6; .
where éw; are Gaussian random variables with standard
deviation o. We calculate the gap A; = sy_; — sy for

increasing number of lattices sites (Fig. 3), and find that
the topological phase is robust for a wide range of o.
Physical implementations.—Our ideas can be imple-
mented by using schemes for nonreciprocal transport
and directional amplification [10,12,35,51-55]. Complex

1.5¢

—N=20 3)(10
N=50

FIG. 3. Gap between the second and lowest singular value of H
given by Eq. (9) with 7. = 1, =y, = 1, as a function of disorder
strength, averaged over 10°/N realizations of disorder. Inset:
Field amplitude at site j = N induced by a coherent drive at j = 1
with €; = 1 in a chain with N = 100.

photon tunneling can be induced by using periodic mod-
ulations in circuit QED [14,56-59] or even vibronic lattices
[24,25]. This approach allows for smaller system sizes than,
e.g., the use of magnetic fields.

We propose an implementation motivated by the super-
conducting circuit setup presented in Ref. [16]. We describe
below the main ideas—technical details can be found
in Ref. [60].

The main system is a chain of N cavities (mode operators
a;) coupled to an auxiliary chain (modes b;). Cavities are
arranged in the ladder configuration of Fig. 4. The non-
interacting cavity system is described by

N+1

Za) a]+Za)bT (16)

Nearby cavity frequencies are separated by Aw, such that
w; = o+ Aw(j—1). The frequency gradient is used to
break time-reversal symmetry. Both main and auxiliary
cavities are subjected to photon leakage with rates x, and
Ky, respectively.

b,
(w + Aw)

(w) J\N‘ . W (w + ZA\Nl[\_
1@111/
(a}) %w + Aw) §(w + 2Aw)

Kalfl Ka Ifz Ka 163

FIG. 4. Scheme for a physical implementation of the 1D
topological amplifier (9). White circles: main local photonic
modes. Orange circles: auxiliary fast decaying modes for reser-
voir engineering.
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Complex coherent couplings are induced by periodic
modulations,

(ajo +aj,).  (17)

with g(1) = go cos(Awt + ¢,). In the interaction picture
with respect to H and in a rotating wave approximation
(RWA) valid if Aw > gy, we obtain the photon tunneling
terms of Eq. (9) with ¢, = ¢gy/2 and ¢ = ¢.

The auxiliary cavities will provide us with collective
incoherent pumping. We consider the couplings

aux Z gR Ni

+ZgL,j(t)(aj+a;)(b/+b;), (18)

j=1

t)(a;+al)(bjy + bl

with periodic modulations gg ;(z) = gy cos|(w; + @;.1)1],
gL;(t) = gocos(2w;t). In the interaction picture with
respect to Hy, and in a RWA valid if gy < w;, we get

Hipy =
aux RWA

i (bj+bj) +Hel.  (19)

N|Q'

Consider now that auxiliary » modes are very fast decaying
(9p < k3), such that we can adiabatically eliminate them [61]
and get dissipative couplings I'j;;=(2t,—k,)8;+140, ;41
+146j—1, with 1, = (g9)*/(4x},) (see Ref. [60] for details).
We thus obtain a collective incoherent pumping induced by
virtual photons being emitted into the auxiliary cavities.
Finally, we can obtain the dissipative coupling matrix in the
form of Eq. (9) by defining the net pumping rate

» = 2ty — kg, such that y, =0 is precisely the value at
which gain and loss are balanced.

Topologically phases can be detected, for example, by
adding a coherent drive at one edge and measuring the
coherences (a;) in the steady state by homodyne detection.
Exponential amplification would signal the existence of a
singular edge state.

Conclusions and outlook.—This work presents a con-
nection between directional amplification and topological
insulator theory. Our approach leads to a classification of
topological phases of non-Hermitian matrices that is
directly connected to applications of photonic lattices as
amplifiers. We have presented an example that could be
implemented with circuit QED setups. In the future we aim
to investigate many-body effects [62], lasing phases [63],
disorder and/or long range interactions and couplings [64].
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