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Many-body interference between indistinguishable particles can give rise to strong correlations rooted in
quantum statistics. We study such Hanbury Brown–Twiss-type correlations for number states of ultracold
massive fermions. Using deterministically prepared 6Li atoms in optical tweezers, we measure momentum
correlations using a single-atom sensitive time-of-flight imaging scheme. The experiment combines on-
demand state preparation of highly indistinguishable particles with high-fidelity detection, giving access to
two- and three-body correlations in fields of fixed fermionic particle number. We find that pairs of atoms
interfere with a contrast close to 80%. We show that second-order density correlations arise from
contributions from all two-particle pairs and detect intrinsic third-order correlations.
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Many-body interference describes processes by which
noninteracting particles acquire strong correlations solely
due to their quantum statistics [1]. In such cases, interfer-
ence occurs between many-particle paths and the enhance-
ment or suppression of particular outcomes is dictated by
the exchange statistics of the particles.
The most famous example of many-body interference is

the “bosonic bunching” of photons, as observed by
Hanbury Brown and Twiss in the development of stellar
intensity interferometry [2,3]. The experimental [4,5] and
theoretical [6] study of correlations in photon fields has
been driving the development of quantum optics [7].
In contrast to the statistical behavior of bosons, which

can in certain cases be described in terms of classical waves
[2], the interference of fermionic particles is a uniquely
quantum mechanical phenomenon. Experimental access to
correlations arising from fermionic interference allows the
study of quantum systems through intensity interferometry,
for example, in heavy ion collisions [8] and ultracold atom
systems [9]. Fermionic interference and associated anti-
correlations have been observed for thermal sources of
neutrons [10] and cold atoms [11], as well as electrons in
free space [12] and in solid state [13,14]. Interference
between fermionic number states, however, has been far
more elusive: Few particle species amenable to single-
particle control possess fermionic statistics, and realizing
high-quality single-fermion sources is an outstanding
experimental challenge. Recent advances in this direction
have enabled the observation of two-fermion interference in
semiconductor architectures [15] and double ionization
processes [16].
Here, we observe high-contrast interference of fermionic

particles in pure quantum states of ultracold atoms. We use
optical tweezers as a configurable, deterministic source of
noninteracting fermions [17,18]. The particles interfere
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FIG. 1. Many-body interference of fermionic particles. (a) The
coincidence events for two detectors monitoring single-particle
sources are given by the available sets of many-body paths. For
indistinguishable particles, the paths add coherently where the
sign of their interference depends on quantum statistics. Two
sources emitting indistinguishable fermions display suppressed
coincidence counts. In a setting with more particles, correlations
between detectors arise due to interference of all many-body
paths. (b) We realize the thought experiment from Fig. 1(a)
using ultracold fermions in optical tweezers. Time-of-flight
expansion is performed in an optical dipole trap aligned with
the x axis connecting the tweezers, and particles are detected in
free-space fluorescence imaging. (c) The probability distribution
jΨðx1; x2Þj2 (plotted for the two-mode case) evolves from
localized to delocalized states during time of flight but retains
a node at x1 ¼ x2 due to fermionic antisymmetry.
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during a ballistic time of flight and are detected with high
fidelity. We observe periodic antibunching of two fermions
with close to full contrast. Adding a third source to the
system, we measure the second- and third-order correlation
properties of a three-fermion field and determine the
contribution of intrinsic third-order correlations [19,20].
Our experiments use 6Li atoms in the same internal state

initialized in optical microtraps separated by tunable
distances of several microns (see Fig. 1) [21]. Within the
regime of s-wave interactions, fermions in the same internal
state do not interact, and the particles behave as ideal free
fermions. We release the atoms simultaneously into a weak,
elongated optical dipole trap aligned with the axis con-
necting the tweezers. The dipole trap enables a one-
dimensional time-of-flight measurement, wherein the wave
packets remain localized in the transverse directions. In the
weakly confined x direction, evolution in the approxi-
mately harmonic confining potential linearly maps initial
momenta onto the final position [22], similar to free-space
time-of-flight schemes [9,23]. The single-particle wave
functions are initially localized to ∼250 nm and expand
to a size of ∼400 μm before detection. We extract the
position of individual atoms along the axis of the dipole
trap with a free-space state-resolved imaging technique
[24] [see Fig. 1(b)]. Any correlations can be interpreted as
position correlations upon interference, or equivalently as
momentum correlations in the initial state.
In a first set of experiments, we study the interference of

fermionic particles from two tweezers separated by a
distance of a ¼ 1.7 μm. The tweezers are loaded inde-
pendently from a degenerate Fermi gas and initialized with
the n ¼ 1 number state with a probability of 97(2)% per
tweezer. Residual tunnel couplings of, at most, 0.1 Hz are
negligible on the ∼100 ms timescale of the experiment.
This configuration corresponds to the scenario sketched in
Figs. 1(a) and 1(c): Fermionic correlations arise due to
destructive interference of two sets of two-particle paths, or
equivalently from the preservation of antisymmetry of the
two-particle wave function during time of flight. This
experiment directly realizes the fermionic analog of the
Ghosh-Mandel experiment [4].
Our method extends the noise-correlation analysis,

which was pioneered on many-body lattice systems
[9,23,25,26], to measurements of full atomic correlations
of a single, nearly pure quantum state. The availability of
individual particle momenta allows us to obtain normal-
ordered correlation functions that are free from autocorre-
lation peaks at a zero interparticle distance [21,27]. We
record the momenta of the particles for each experimental
run and construct the momentum density hnki at wave
vector k and its second-order correlator h∶n̂k1n̂k2∶i from
several thousand realizations (h∶ · ∶i denotes normal order-
ing). We only retain data from runs where two particles
were successfully prepared and detected, which correspond
to about 80% of the data.

In Fig. 2(a), the experimentally measured momentum
correlator is shown. The strong correlations in the relative
momentum d ¼ k1 − k2 immediately demonstrate the non-
separability of the correlator into single-particle momenta.
The modulations occur on a “lattice” momentum scale
klat ¼ π=a and carry an envelope set by the single-particle
on-site momentum distribution.
As correlations do not depend on the center of mass

momentum, we define a normalized correlation function
[9,23]

Cð2ÞðdÞ ¼
R h∶n̂kn̂kþd∶idkR hn̂kihn̂kþdidk

: ð1Þ

The correlation function in Fig. 2(b) exhibits close to full-
contrast sinusoidal oscillations consistent with a minimum
at d ¼ 0, corresponding to strong fermionic antibunching.
The grayed out points near d ¼ 0 mark the region of
particle separation below 30 μm, where two particles
cannot be distinguished reliably and coincidences cannot

(a)

(b)

FIG. 2. Interference of two fermions. (a) Measured momentum
correlator h∶n̂k1n̂k2∶i for two particles prepared in two optical
tweezers, showing strong fermionic antibunching. The data are
symmetric about the diagonal k1 ¼ k2 by construction, but we
plot the full correlator for visual clarity. (b) The normalized
correlator Cð2ÞðdÞ shows a clear, almost full sinusoidal modula-
tion in the relative momentum d. We extract a contrast of 79(2)%
by fitting a cosine to the data, excluding the grayed out points
near the origin, for which coincidences cannot reliably be
detected.
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be detected in our experiment [21]. We exclude these points
from all further analysis. To quantify the strength of
periodic correlations, we fit a damped cosine function to
the correlations away from d ¼ 0, which gives a modula-
tion contrast of 79(2)%. The contrast certifies the high
degree of indistinguishability between the particles during
the preparation and the matter-wave expansion. With a
ground state preparation fidelity of 97(2)%, one would in
principle expect correlations with a contrast of up to ∼95%.
The measured contrast is limited by alignment errors
between the axis of the optical dipole trap and the axis
connecting the tweezer, which provide some distinguish-
ability between the particles during the expansion dynam-
ics [21]. Nevertheless, the contrast significantly exceeds the
minimum visibility of 1=

ffiffiffi
2

p
≈ 71% required to perform

quantum optics experiments such as nonlocality tests with
massive particles [28,29].
With this high-contrast on-demand source of indistin-

guishable fermions, we can now study second- and third-
order correlations of a triplet of sources (Fig. 1). For a system
of N localized sources each emitting a single fermionic
particle, it can be shown that negative exchange symmetry
gives rise to a second-order correlation function of the form

Cð2ÞðdÞ ¼ 2

N2

XN

hi;ji
ð1 − cos ðdðxi − xjÞÞ; ð2Þ

where the summation runs over all distinct pairs of emitters,
and xi refers to the center of the ith source [21].

This expression gives an intuitive picture for the expected
second-order momentum correlations [Fig. 3(a)]: Every pair
of particles generates a sinusoidal antibunching signalwith a
spacing given by the inverse source separation. The full
second-order correlation function is the sum over all pair-
wise correlation signals.
We probe the validity of this picture using three equidis-

tant tweezers with a12 ¼ a23 ¼ 2 μm,where aij refers to the
spatial separation of tweezer i and j. Pairs from neighbour-
ing tweezers contribute a “long wavelength” correlation
signal at a scale of klat ¼ π=a12 ¼ π=a23, whereas the
outermost tweezers 1 and 3 give rise to a “short wavelength”
modulation with half the period of π=a13 ¼ klat=2. The two
contributions should result in a superlattice correlation
structure, shown in Fig. 3(a). Adding more sources, and
hence Fourier components, would lead to narrower corre-
lation minima and result in the delta-function correlations
observed for fermionic band insulators [9].
Figure 3(b) shows the experimentally measured second-

order correlations. We first record the correlator for every
tweezer spacing individually by loading only two of the
three microtraps. The pairwise correlations [shown in
panels (i) to (iv) of Fig. 3(b)] are identical to the two-
tweezer case in Fig. 2, with a correlation scale given by the
inverse spacing of the active sources. Separately, we
measure the full second-order correlator for all three
tweezers loaded simultaneously [Fig. 3(c)].
The bottom panels of Figs. 3(c) and 3(d) show the

correlation function Cð2ÞðdÞ for the three-particle system

(a) (b) (c) (d)

FIG. 3. Second-order correlations for three fermions. (a) Top: For an arbitrary configuration of single-fermion sources, each pair of
particles contributes a sinusoidal oscillation to the correlation function Cð2ÞðdÞ. The full correlator can exhibit complex patterns due to
beat notes between all spatial frequencies. Bottom: Expected full correlation function for three regularly spaced sources. (b) Correlators
for individual pairs of sources. (c) Three particles released from three equidistant tweezers exhibit correlations at the momentum
scale klat and its first harmonic, leading to a “superlattice” structure in Cð2ÞðdÞ. The bottom row displays the measured Cð2ÞðdÞ for three
particles (data points), together with a prediction (red line) given by the weighted sum of fits to the two-particle contributions from
Fig. 3(b). (d) For three tweezers with irregular spacing, three distinct spatial frequencies contribute to the full second-order correlator.
The sharp dip at k1 ¼ k2 is partially due to our lack of sensitivity to coincidences at short distances.
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(blue data points). We test the applicability of Eq. (2) by a
comparison to the two-tweezer contributions: We individu-
ally fit the correlation functions from Fig. 3(b) and show
the weighted sum of the fits as the red line [21]. The
three-particle second-order correlation function, including
the decay of the contrast towards larger relative momenta
d, is very well reproduced by the sum of the pair
contributions.
For the above case of regularly spaced sources, all two-

particle correlations occur at the lattice momentum scale
and its first harmonic. Source arrays with irregular spacing,
on the other hand, can result in distinct correlation signals
from all pairs of emitters and complex structures in the full
correlator [see Fig. 3(a)].
We study the case of three tweezers with nonequal

spacing in Fig. 3(d), where a12 ¼ 1.6 μm and
a23 ¼ 1.5a12 ¼ 2.4 μm. The incommensurate spacing
leads to a doubling of the unit cell to four times the

momentum klat, which we define via the smallest tweezer
spacing a12. Also, here, the correlations in the three-particle
system are in perfect agreement with the weighted con-
tributions from pairs of sources.
To fully characterize the field produced by multiple

sources, a measurement of correlation functions at higher
orders is required. For bosonic particles, suchmeasurements
are routinely performed to assess the statistical properties of
light sources [7,30,31]. Recently, measurements of higher-
order correlations of massive bosonic particles have become
possible with ultracold atoms [32–34].
We measure the statistical properties of the matter-wave

field emanating from the three fermionic sources via the
third-order correlator h∶n̂k1 n̂k2 n̂k3∶i and the corresponding
normalized correlation function

Cð3Þðd1; d2Þ ¼
R h∶n̂kn̂kþd1 n̂kþd2∶idkR hn̂kihn̂kþd1ihn̂kþd2idk

: ð3Þ

FIG. 4. Third-order momentum correlations. Normalized correlation function Cð3Þðd1; d2Þ for three fermions released from three wells
with regular spacing (a23 ¼ a12, top row) and nonequal spacing (a23 ¼ 1.5a12, bottom row). The left column shows the full measured
correlations, and the central and right columns show the disconnected and connected parts of the correlation function, respectively. By
construction, the function is symmetric under the transformation ðd1; d2Þ ⇔ ð−d1;−d2Þ. The connected part of the correlation function
Cð3Þ
con is scaled by a factor of two for better visibility. The measurement demonstrates the sensitivity to third-order correlations in the

fermionic matter-wave field.
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The correlation function is shown in Fig. 4 for the two
datasets from Fig. 3. The equidistant and incommensurate
tweezer configurations lead to clear and distinct correlation
features at third order.
In order to interpret the third-order density correlations,

it is useful to first remove contributions from lower order.
This can be achieved by subtracting a suitable combination
of first- and second-order correlators from the full third-
order correlation function. Any remaining correlations are
intrinsic; that is, they cannot be accessed from measure-
ments at lower order. In interacting systems, such intrinsic
correlations carry crucial information about the many-body
state [33,34], but they may be present even for free particle
systems [19,20]. For noninteracting bosons, e.g., the
intrinsic correlations contribute to a striking increase in
zero-distance correlations at higher order [30,32].
To assess the presence of intrinsic third-order correla-

tions in our system, we combine our measurements at
second order to construct the disconnected part of the
third-order correlation function Cð3Þ

dis ðd1; d2Þ. We define the
disconnected correlator as [19,20,33]

h∶n̂k1 n̂k2 n̂k3∶idis ¼ s1ðNÞðhn̂k1ih∶n̂k2 n̂k3∶i
þ hn̂k2ih∶n̂k1 n̂k3∶i þ hn̂k3ih∶n̂k1 n̂k2∶iÞ
− 2s2ðNÞhn̂k1ihn̂k2ihn̂k3i: ð4Þ

The scale factors s1ðNÞ¼½NðN−1ÞðN−2Þ�=½N2ðN−1Þ�
and s2ðNÞ ¼ ½NðN − 1ÞðN − 2Þ�=N3 account for correla-
tions due to particle number conservation [21] and
approach unity as N → ∞. The corresponding correlation

function Cð3Þ
dis ðd1; d2Þ represents the experimentally acces-

sible knowledge of third-order correlations available from
pairwise measurements and is shown in the central column
of Fig. 4. Clearly, it does not include all features of the full
correlation function, and the connected part of the corre-

lation function, Cð3Þ
con ¼ Cð3Þ − Cð3Þ

dis , retains additional struc-
ture, shown in the right-hand column of Fig. 4. The
presence of intrinsic correlations agrees very well with
an analytic calculation and is in full agreement with a
decomposition according to Wick’s theorem [21,35].
Recovering the expected functional form of third-order
correlations for different spatial tweezer arrangements
validates our analysis. We conclude that the system dis-
plays strong correlations at third order consistent with ideal
fermionic statistics. To our knowledge, this constitutes the
first experimental characterization of a fermionic field
beyond second order and realizes the fermionic counterpart
to the recent observation of three-photon interfer-
ence [36,37].
Our work opens the door for several interesting avenues

of research: Our high-purity on-demand source of indis-
tinguishable fermions may enable quantum optics experi-
ments with massive particles, such as fermionic ghost
imaging or Bell tests [20,29,38]. Extending our methods

to more particles and modes, the interplay of coherence,
indistinguishability, and quantum statistics can be studied
in many-fermion interference [1]. This is of particular
interest in regards to the dynamics of many-body systems,
which are given by a combination of interaction effects and
the interference phenomena studied here [39].
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