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In this Letter, combining peak theory and the numerical analysis of gravitational collapse in the radiation
dominated era, we show that the abundance of primordial blacks holes, generated by an enhancement in the
inflationary power spectrum, is extremely dependent on the shape of the peak. Given the amplitude of the
power spectrum, we show that the density of primordial black holes generated from a narrow peak is
exponentially smaller than in the case of a broad peak. Specifically, for a top-hat profile of the power spectrum
in Fourier space, we find that to have primordial black holes comprising all of the dark matter, one would only
need a power spectrum amplitude an order of magnitude smaller than suggested previously, whereas in the
case of a narrow peak, onewould instead need a much larger power spectrum amplitude, which in many cases
would invalidate the perturbative analysis of cosmological perturbations. Finally, we show that, although
critical collapse gives a broad mass spectrum, the density of primordial black holes formed is dominated by
masses roughly equal to the cosmological horizon mass measured at horizon crossing.
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Introduction.—The combination of direct and indirect
constraints (for the latest results see [1–3]) indicated that
primordial black holes (PBHs) could account for all
of the dark matter (DM) in the approximate range
½10−16; 10−14� ∪ ½10−13; 10−11�M⊙.
The observational absence of isocurvature perturbations

and non-Gaussianities in the latest cosmic microwave
background data (CMB spectrum) favors single field
models of inflation [4]. In this context it has been proposed
by [5] (see also [6,7]) that a flattening of the inflationary
potential, after the generation of the observed CMB spectra,
might greatly enhance the power spectrum at scales smaller
than those associated with the CMB so as to generate a non-
negligible abundance of PBHs.
While PBHs could form by the collapse of statistical

fluctuations of curvature perturbations generated during
inflation, the usual slow-roll approximation, which well
describes CMB physics, fails in this case [7], so that a more
careful analysis must be performed, as discussed recently in
[8–10]. Additionally, the abundance of PBHs depends on
the amplitude of the inflationary power spectrum and a
threshold Pc. This threshold is related to the minimum
amplitude of initial curvature perturbations eventually
collapsing to form black holes.
Recently there has been some confusion about the

correct estimate of Pc: for example, in [5,11] a rather
small value of Pc ∼Oð10−1Þ has been mistakenly equated
to the analytical estimate of the critical value δc for the
integrated density perturbations [12]. A larger value of
Pc ∼Oð1Þ [8] was obtained by incorrectly converting the

critical amplitude of the integrated density perturbations
into Pc, as in [10] (in the realm of effective field theories)
and in [13] (within explicit string theory realizations).
In the present letter, we show using peak theory [14] that

all previous estimates of Pc are actually inconsistent with
the numerical simulations of PBH formation [15–19],
whether or not the PBHs comprise the whole of the
DM. The key point is that the threshold Pc is not universal
but instead strongly depends on the shape of the infla-
tionary power spectrum.
Peak theory was already used in [20] to calculate the

abundance of PBHs, without considering the relation
between the shape of the inflationary power spectrum
and the threshold of the energy density peak. In the
following we propose an improved procedure for calculat-
ing the PBH abundance taking into account also the effect
of the shape of the power spectrum.
Cosmological perturbations and PBH formation.—In

the radiation dominated era, PBHs could be formed by
sufficiently large cosmological perturbations collapsing
after reentering the cosmological horizon. Assuming
spherical symmetry, such regions can be described by
the following approximate form of the metric at super-
horizon scales,

ds2 ≃ −dt2 þ a2ðtÞe2RðrÞ½dr2 þ r2dΩ2�; ð1Þ

where aðtÞ is the scale factor while RðrÞ is the comoving
curvature perturbation. In this regime the curvature per-
turbation is nonlinearly conserved [21] and, from the
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Einstein equations, in the gradient expansion approxima-
tion [19,22], one has

δρ

ρb
ðr; tÞ ≃ −

1

a2H2

8

9
e−5RðrÞ=2∇2eRðrÞ=2; ð2Þ

where ∇2 is the flat space Laplacian, H ≡ _aðtÞ=aðtÞ is the
Hubble parameter and ρbðtÞ ¼ 3M2

pH2ðtÞ is the back-
ground energy density.
In the metric (1) the areal radius is given by Rðr; tÞ ¼

aðtÞreζðrÞ and the amplitude of a cosmological perturbation
can then be measured by the mass excess within a spherical
region of radius R as

δM
Mb

≃ δðr; tÞ≡ 1

Vb

Z
r

0

4π
δρ

ρb
R2R0dr; ð3Þ

where Mbðr; tÞ ¼ Vbðr; tÞρbðtÞ is the background mass
within the spherical volume Vbðr; tÞ ¼ 4πR3ðr; tÞ=3.
As explained in [19], a PBH can be formed when

the maximum of the compaction function C≡
2GδMðr; tÞ=Rðr; tÞ is larger than a certain threshold value.
This prevents the overdensity bouncing back into the
expanding Universe. At superhorizon scales, when the
maximum of C is located well outside the cosmological
horizon, this quantity is conserved and is related to the mass
excess by

δðr; tÞ ≃
�

1

aHr

�
2

CðrÞ: ð4Þ

The location of this maximum, called rm, is an important
quantity measuring the characteristic scale of the density
perturbation. Comparing different profiles in terms of r=rm
one has that similar shapes measured in these units have
similar values of the mass excess threshold δc ≡ δcðtm; rmÞ,
where tm is defined by aðtmÞHðtmÞrm ¼ 1. This identifies
the so-called horizon crossing measured in real space, but
one should bear in mind that δc is calculated using the
approximation of δðr; tÞ at superhorizon scales.
Although the threshold δc characterizes the mass excess

needed to form PBHs, it is the critical value of the peak
δρcð0Þ=ρb that plays a crucial role for computing their
cosmological abundance as we see in the next section.
By performing a detailed numerical study it has been

found that, depending on the initial profile of the energy
density, the threshold δc is in the range 0.41≲ δc ≤ 2=3,
which is related to the range of critical values of the energy
density calculated at the center of the overdensity, with
δρcð0Þ=ρb ≥ 2=3 (see [19] for more details).
Applications of peak theory.—The average density

profile In the previous section we have discussed the
conditions for which a single perturbation is able to form
a PBH. In this section we apply this knowledge to the
cosmological perturbations generated during inflation.

Cosmological perturbations are of quantum origin and
therefore their shapes and amplitudes are statistically
distributed. In particular Δ≡ δρ=ρb is a statistical variable
and since we assume that perturbation theory applies during
inflation, the mean value of Δ, and thus the gradient of R
and its amplitude, is very small. As discussed earlier,
however, to form PBHs we do need large, i.e., nonlinear,
values of Δ. Therefore, we need to search for large
perturbations (peaks) away from the mean value.
[Because the formation of a PBH is a rare event, in
principle the abundance of PBHs can be modified by
non-Gaussian contributions to the statistics of the primor-
dial curvature perturbations [23,24]. Whether or not these
non-Gaussianities are important is a model dependent
question that is still under debate (for more details see
[23,25–27]) and is not addressed in this Letter.] Assuming
that both Δ and R are approximately Gaussian variables,
with the help of peak theory [14], those peaks will be
described only by the variance of Δ, which is completely
dominated by the two-point function ofR via the linearized
relation

δρ

ρb
≃ −

1

a2H2

4

9
∇2R: ð5Þ

Higher correlators are then suppressed by higher powers of
the power spectrum of R. (In a paper that appeared on the
same day as ours [28], these corrections were evaluated
finding that the variance of Δ is slightly larger than the one
found here.) In Fourier space we then have

ð2πÞ3PΔðk; tÞδðk; k0Þ≡ hΔðk; tÞΔðk0; tÞi ≃
�

k
aH

�
4 16

81

× ð2πÞ3δðkþ k0Þ 2π
2PðkÞ
k3

; ð6Þ

where we have used a standard definition of the curvature
perturbation power spectrum PðkÞ [29]. Finally, we can
then define the moments of PΔðk; tÞ as

σ2jðtÞ≡
Z

k2dk
2π2

PΔðk; tÞk2j: ð7Þ

The density of PBHs at the moment of formation must be
much smaller than the density of the background radiation,
otherwise they will dominate the present Universe when it
becomes matter dominated. For this reason the peaks
generating PBHs must be rare and, to a good approxima-
tion, can be considered spherical. Nonsphericity of the
peaks would be obtained by the interaction of different
adjacent overdensities [14].
The observed superhorizon density profile is constructed

by using the multivariate Gaussian distribution of the (real
space) random field Δðr; tÞ. Following [14] the super-
horizon averaged density profile is measured in terms of the
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relative amplitude of the peak defined as ν≡
½F ð0Þ=σ̃0� ≫ 1, which implies that peaks are rare. Then
the mean overdensity profile per given central value is

Fðr; tÞ ≃ F ðrÞ
a2H2

; ð8Þ

with

F ðrÞ≡ F ð0Þ ξðr; tÞ
ξð0; tÞ ; ð9Þ

where σ̃0 ≡ σ0ðtÞa2H2 and F ð0Þ=ðaHÞ2 is the amplitude
of the overdensity at the center of the profile and

ξðr; tÞ ¼ 1

2π2 × ð2πÞ3
Z

dkk2
sin ðkrÞ

kr
PΔðk; tÞ: ð10Þ

In this limit the number density of peaks corresponding to a
given amplitude F ð0Þ, in the comoving volume, is

N cðνÞ ¼
k3�
4π2

ν3e−ν
2=2θðν − νcÞ; ð11Þ

where k� ≡ ðσ1=
ffiffiffi
3

p
σ0Þ and, at superhorizon scales, ν is

time independent. The critical value νc discriminates
between perturbations forming black holes (ν > νc) and
perturbations dispersing into the expanding Universe
(ν < νc).(The spreading of the profiles can be estimated
following Sec. VII of [14],

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½Δðr; tmÞ − F ðrÞr2m�2i

p
F ðrÞr2m

≃
1

ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψðrÞp
ψðrÞ ;

where ψðrÞ≡ ½ξðr; tÞ=ξð0; tÞ�. Since ν ≫ 1 our approxi-
mation of considering only the threshold value of the mean
profile, instead of the mean threshold, is a good one around
the peak. There would be some small effects related to the
edge of the profile, but since they are small for the
calculation of the threshold [19], we neglect them here
(for more details we refer to [28] where these effects have
been estimated).)
Abundance and mass spectrum of PBHs The number of

sufficiently large peaks at superhorizon scales gives us the
number of PBHs formed once the overdensity crosses the
horizon. Then the number density of PBHs in physical
space, at the moment of formation, is given by

N pðνÞ ¼
N cðνÞ
aðtfÞ3

;

where tf is the time when the PBHs are formed. Note that
k�=a is not dependent on the rescaling of the scale factor
and so the same is also valid for N pðνÞ, as it should be.
Finally, we are now able to define the density of PBHs of a
given mass MPBHðνÞ at formation to be

ρPBHðνÞ ≃MPBHðνÞN pðνÞ: ð12Þ

The relative density of PBHs that would still exist today,
measured at formation with respect to the background
energy density, is

βf ≡
Z

∞

νmin

ρPBHðνÞ
ρbðtfÞ

dν; ð13Þ

where ρbðtfÞ ¼ 3M2
pH2ðtfÞ and Mp is the Planck mass.

The lower limit νmin corresponds to Mmin ∼ 1015 g, which
is the mass of PBHs that would already have evaporated by
now. To match the abundance of PBHs with the observed
DM, one should have βf ≃ 10−8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPBH=M⊙

p
, as can be

seen for example in [13].
For given ν, the PBH mass is well approximated by the

scaling law for critical collapse [15,17],

MPBH ≃KMHðtmÞ
�

σ̃0
a2mH2

m

�
γ

ðν − νcÞγ; ð14Þ

where for radiation γ ≃ 0.36, K ∼Oð1Þ is a numerical
coefficient that depends on the specific density profile and
MHðtmÞ≡ 4πðM2

p=HmÞ is the horizon mass measured at
horizon crossing.
Finally we have

βf ≃
K
3π

�
k�

amHm

�
3
�

σ̃0
a2mH2

m

�
γ

ν3þγ
c IðxminÞ; ð15Þ

where

IðxminÞ≡
Z

∞

xmin

af
am

x3ðx − 1Þγe−
x2

2ν−2c dx;

and x≡ ðν=νcÞ. Numerical simulations show that af is
only weakly dependent on ν [19], giving approximately
af=am ≃ 3, and therefore we take this factor out from I .
Assuming that the horizon mass at formation is much

larger than 1015 g, since otherwise no relevant PBH
abundance would be generated (we are envisaging here
that these PBHs would account for all the DM, or for a
significant part of it), in the large νc limit, one can
approximate the previous integral with its saddle point at
νs ≃ νc þ ðγ=νcÞ as was done in [30], obtaining

βf ≃
ffiffiffi
2

π

r
K
�

k�
amHm

�
3
�

σ̃0
a2mH2

m

�
γ

ν1−γc γγþ1=2e−
ν2c
2 : ð16Þ

The error from using this approximation grows slowly with
νc but always stays around 10%, for νc ¼ Oð10Þ.
If the linear approximation applies (νc ≫ 1), the density

of PBHs would be typically peaked at the saddle point of
(15), which, inserting it into (14), gives
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MPBHðνsÞ ¼ 4πK
M2

p

Hm

�
σ̃0

a2mH2
m

�
γ
�
γ

νc

�
γ

: ð17Þ

AlthoughMPBHðνsÞ still gives the right order of magnitude
for the black hole masses dominating the DM density, the
square root of the variance of (11) is numerically calculated
to be about 1.2MPBHðνsÞ.
Threshold of the primordial power spectrumWe have so

far discussed how to relate the abundance of PBHs to the
primordial power spectrum in the case of rare peaks,
νc ≫ 1. We see that generically ν2c ∝ P−1, and so the
approximation of rare peaks, implying spherical symmetry,
is intimately related to the linearity of the mean primordial
perturbations. In the following, as benchmarks of power
spectra generated during inflation, we consider the case of a
narrow power spectrum, and the opposite case of a broad
spectrum, simplified as a top-hat distribution.
Narrow power spectrum The first power spectrum that

we consider is

P ¼ P0e
−ðk−kpÞ2

2σ2
P ; ð18Þ

in the limit of k2p ≫ σ2P . In this case one obtains the critical
density profile plotted with a solid line in the left panel of
Fig. 1. The parameters related to this profile are k� ≃

ffiffiffi
3

p
kp,

rm ≃ ð2.74=kpÞ, and σ̃0 ≃ 0.7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0σPk3p

q
. Numerical simu-

lations give the following critical values: δc ≃ 0.51,
δρc=ρb ≃ 1.2, F cð0Þ ≃ 1.2=r2m ≃ 0.16k2p, which finally
gives νc ≃ 0.22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkp=σPP0Þ
p

.
To compare with previous literature and give an order of

magnitude estimate, we can crudely approximate
βf ∼ e−ν

2
c=2. For all of the dark matter being in PBHs of

mass 10−16 M⊙, we would need βf ∼ 10−16 and therefore
P0 ∼ 7 × 10−4ðkp=σPÞ ≫ 10−3 (this does not change
significantly even up to MPBH ∼ 100 M⊙). Since for
producing the seeds of PBHs from inflation one requires
P0 ≪ 1, there is only a small margin for this kind of
spectrum to work.
Finally, using (17), the PBHs formed by this spectrum

are peaked at MPBH ∼ 0.8MHðtmÞ.
Broad power spectrum The second power spectrum

considered is a top hat with amplitude P0, extended
between ½kmin and kmax�, with kmax ≫ kmin. (Note that
modes entering the cosmological horizon much later than
the formation of the apparent horizon, which typically
happens at the time tc ∼ 10tm [19], will not participate in
the black hole formation.) In this case, one obtains the
critical density profile plotted with a dashed line in the left
panel of Fig. 1 with k� ≃

ffiffiffi
2

p
kmax, rm ≃ 3.5=kmax,

and σ̃0 ≃ 0.22
ffiffiffiffiffiffi
P0

p
k2max.

As one can see, the two profiles in units of r=rm are
almost the same within a sphere of radius rm. Therefore,
numerical simulations give basically the same values of δc,
δρc=ρb as in the previous case [19]. In terms of kmax

one then obtains F cð0Þ ≃ 0.10k2max, which finally gives
νc ≃ 0.46ðP0Þ−1=2. For βf ∼ 10−16 we get P0 ∼ 3 × 10−3,
one order of magnitude smaller than the value ∼2 × 10−2

previously quoted in the literature, e.g., [8,10,13].
Therefore, for inflationary models generating this spec-
trum, it is found that PBHs are more likely to be produced
than had been previously suggested in the literature.
Finally, using (17), the PBHs formed by this spectrum

are peaked at a mass MPBH ∼ 0.7MHðtmÞ.
Discussion Although the expression for βf derived in

Eq. (15) differs in many aspects from the one used in the
Press-Schechter approach, previously used in the literature
(see e.g., [30]), the main numerical difference comes from
the discordant definitions of νc: the PBH abundance was
incorrectly related to the critical value of δ calculated at the
edge of the overdensity r0 ignoring the profile dependence
of the overdensity. In particular, δ0 ≃ 0.45 corresponding to
a Mexican-hat profile [17] was used earlier giving

ν0 ≃
9

4

δ0ffiffiffiffiffiffi
P0

p ≃ 1.01P−1=2
0 : ð19Þ

In Fig. 1 we plot the two energy density profiles, corre-
sponding to the narrow and broad peaks of the power
spectrum, as a function of r=rm. The two shapes are not
significantly different because the profiles of the peak of the
power spectrum for k > kp or k > kmax, which corresponds
in real space to the region r≲ rm, are very similar. Note that
the Mexican-hat profile is very similar to the profiles drawn
in Fig. 1 and so the value of δ0 ≃ 0.45 is the relevant one for
the profiles studied in this letter.
In the left frame of Fig. 2 we plot the ratio between νc for

the narrow and broad peak of the power spectrum
FIG. 1. This panel shows the critical density profile obtained
from the narrow and broad power spectrum plotted against r=rm.
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calculated here with peak theory, and ν0 given by (19) as a
function of P0, while in the right frame of Fig. 2 we plot the
ratio of the corresponding relative abundance βc=β0, with
respect to the value of P0. For the narrow spectrum of
both plots we have fixed the abundance βf ∼ 10−16 in the

approximation βfðxÞ ∼ e−x
2=2 because νc depends on

kp=σP and P0, while for the broad spectrum νc is only
a function of P0 and the abundance is therefore varying
with P0 along the dashed line. The intersection between the
dashed line and the solid line gives the value of P0 for the
broad spectrum when βf ∼ 10−16.
These plots show clearly that the approach used pre-

viously was incorrect, with a value of νc ≃ 0.5ν0 for the
broad spectrum, while the difference for the narrow
spectrum depends on P0 ¼ P0ðβf; kp=σPÞ. The error
caused by using ν0 instead of νc, once the variance of
the spectrum is fixed, becomes smaller for larger masses of
PBHs because a larger value of βf corresponds to a larger
value of P0. In particular, for the broad spectrum we have
logðβ0=βcÞ ≃ −2νc which, for MPBH ∼ 10−16 M⊙, gives
½βðν0Þ=βðνcÞ� ∼ 10−64 (see Fig. 2) while considering for
example MPBH ∼ 100 M⊙, one has ½βðν0Þ=βðνcÞ� ∼ 10−28.
Finally, let us stress that the cosmological horizon mass

defined in our letter is defined at the horizon crossing time
aðtmÞHðtmÞrm ¼ 1. This mass generically differs from the
one used in the literature, which is calculated at the horizon
crossing aðtkÞHðtkÞ=k ¼ 1 of a characteristic mode k
(typically the one associated with the peak of the power
spectrum). For example in the narrow spectrum k ¼ kp and
the mass calculated at rm is about ten times larger than the
one calculated at 1=kp, as was also noted in [28].
Summary.—In the present Letter we have reanalyzed the

physics of PBH formation by combining peak theory [14]

with the numerical analysis of gravitational collapse in the
expanding Universe [19]. We have computed the abun-
dance of PBHs generated by a large peak in the primordial
power spectrum of curvature perturbations. Characterizing
the peak by its scale, amplitude, and width, we have shown
that the abundance of PBHs is extremely dependent on the
shape of the peak. The reason is that the threshold of the
energy density peak for PBH formation depends strongly
on the distribution of the real space overdensity, which can
be obtained, assuming Gaussian statistics, from the two-
point correlation function of curvature perturbations. This
crucial aspect had been overlooked in previous literature.
Given the amplitude of the peak in the power spectrum at

a particular scale, the abundance of PBHs generated by a
narrow peak is exponentially smaller than the abundance
generated by a broad one. In particular, to describe all of the
dark matter with PBHs, using a top-hat profile of the peak
in the power spectrum in Fourier space, the amplitude is an
order of magnitude smaller than that previously calculated
without taking into account the shape. Instead, for a narrow
peak, as often assumed in the literature, one would need a
much larger amplitude, which in many cases would
invalidate the perturbative analysis of cosmological curva-
ture perturbations.
Our analysis has been done assuming negligible non-

Gaussianities in the initial conditions of the overdensity
field. However, in certain cases, non-Gaussianities of the
curvature perturbations [23] and/or non-Gaussianities
related to the nonlinear relation between the curvature
and overdensity perturbations [24] might give interesting
contributions in the calculation of abundances of PBHs,
both in terms of new statistics and for nonspherical
deformations of the primordial perturbations. We leave
these interesting questions for future research.

FIG. 2. The left panel shows the comparison between the threshold value νc and the value of ν0 calculated previously by the use of the
Press-Schechter formalism, as a function of P0. The right panel shows instead the corresponding comparison between the approximated
abundance of PBHs βc ≡ βðνcÞ and β0 ≡ βðν0Þ. For the broad spectrum the abundance is not fixed, while for the peaked one the ratio
kp=σP has been fixed by considering MPBH ∼ 10−16 M⊙.
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