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The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently
solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE)
algorithms. For precision ϵ, QPE requires Oð1Þ repetitions of circuits with depth Oð1=ϵÞ, whereas each
expectation estimation subroutine within VQE requires Oð1=ϵ2Þ samples from circuits with depth Oð1Þ.
We propose a generalized VQE algorithm that interpolates between these two regimes via a free parameter
α ∈ ½0; 1�, which can exploit quantum coherence over a circuit depth of Oð1=ϵαÞ to reduce the number of
samples to Oð1=ϵ2ð1−αÞÞ. Along the way, we give a new routine for expectation estimation under limited
quantum resources that is of independent interest.
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Introduction.—One of the most compelling uses of a
quantum computer is to find approximate solutions to the
Schrödinger equation. Such ab initio or first-principles
calculations form an important part of the computational
chemistry tool kit and are used to understand features of
large molecules such as the active site of an enzyme in a
chemical reaction or are coupled with molecular mechanics
to guide the design of better drugs.
Broadly speaking, there are two approaches to ab initio

chemistry calculations on a quantum computer: one uses the
quantum phase estimation (QPE) algorithm as envisaged by
Lloyd [1] and Aspuru-Guzik et al. [2], the other uses the
variational principle, as exemplified by the variational
quantum eigenvalue solver (VQE) [3]. Given a fault-tolerant
device, QPE can reasonably be expected to compute energy
levels of chemical species as large as the iron molybdenum
cofactor (FeMoco) to chemical accuracy [4], essential to
understanding biological nitrogen fixation by nitrogenase
[4,5]. That QPE may provide a quantum-over-classical
advantage can be rationalized by the exponential cost
involved in naively simulating quantum gates on n qubits
bymatrix multiplication. Onemain reason that QPE requires
fault tolerance is that the required coherent circuit depth, D,
scales inversely in the precision ϵ. This means D ¼ Oð1=ϵÞ
scales exponentially in the number of bits of precision.
The VQE algorithm can also estimate the ground state

energy of a chemical Hamiltonian but does so using a
quantum expectation estimation subroutine together with a
classical optimizer. In contrast to QPE, VQE is designed
to be run on near-term noisy devices with low coherence
time [3,6,7]. While VQE may also provide a quantum-
over-classical advantage via the same rationalization as
QPE, it suffers from requiring a large number of samples
N ¼ Oð1=ϵ2Þ during each expectation estimation subrou-
tine leading to fears that its run time will quickly become
unfeasible [8].

We propose a generalized VQE algorithm, we call
α-VQE, capable of exploiting all available coherence time
of the quantum computer to up-to-exponentially reduce the
number of samples required for a given precision. The α
refers to a free parameter α ∈ ½0; 1� we introduce, such that
for all values of α > 0, α-VQE outperforms VQE in terms
of the number of samples and has total runtime,OðN ×DÞ,
reduced by a factor Oð1=ϵαÞ. Moreover, compared to QPE,
α-VQE has a lower maximum circuit depth for all α < 1. At
the two extremes, α ¼ 0 and α ¼ 1, α-VQE recovers the
scaling of VQE and QPE, respectively.
The T1 and T2 coherence times of the quantum computer

essentially define a maximum circuit depth, Dmax, that can
be run with a low expected number of errors [9]. By
choosing an α ∈ ½0; 1� such that the maximum coherent
circuit depth DðαÞ ¼ Oð1=ϵαÞ of the expectation estima-
tion subroutine in α-VQE equals Dmax, we show that the
expected number of measurements N required can be
reduced to N ¼ fðϵ; αÞ, where

fðϵ; αÞ ¼

8>><
>>:

2

1 − α

� 1

ϵ2ð1−αÞ
− 1

�
if α ∈ ½0; 1Þ

4 log
�1
ϵ

�
if α ¼ 1

: ð1Þ

Note that fðϵ; 0Þ ¼ Oð1=ϵ2Þ is proportional to the
number of measurements taken in VQE, whereas fðϵ; 1Þ ¼
O( logð1=ϵÞ) is the number of measurements taken in
iterative QPE up to further log factors.
Our letter is organized as follows. We generalize VQE to

α-VQE by replacing its expectation estimation subroutine
with a tunable version of QPE we name α-QPE. This is set
out in three steps. First, we introduce α ∈ ½0; 1� into a
Bayesian QPE [10] to yield α-QPE. Second, we describe
how to replace the expectation estimation subroutine within
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VQE by α-QPE by modifying a result of Knill et al. [11].
Third, we give a schematic illustration of the resulting
α-VQE. We conclude our letter by explaining how α-VQE
accelerates VQE.
Generalizing VQE to α-VQE.—The standard VQE algo-

rithm is inspired by the use of variational ansatz wave
functions jψðλÞi, depending on a real vector parameter λ, in
classical quantum chemistry. The ground state energy of a
Hamiltonian H is found by using a hybrid quantum-
classical computer to calculate the energy EðλÞ of the
system in the state jψðλÞi, and a classical optimizer to
minimize EðλÞ over λ.
The idea is to first writeH as the finite sumH ¼ P

aiPi,
where ai are real coefficients and Pi are a tensor product of
Pauli matrices. The number of summed terms is typically
polynomial in the system size, as is the case for the
electronic Hamiltonian of quantum chemistry. Then for a
given (normalized) jψðλÞi we estimate the energy,

EðλÞ≡ hψðλÞjHjψðλÞi¼
X
i

aihψðλÞjPijψðλÞi; ð2Þ

using a quantum computer for the individual expectation
values and a classical computer for the weighted sum.
Finally a classical optimizer is used to optimize the function
EðλÞ with respect to λ by controlling a preparation circuit
RðλÞ∶j0i ↦ jψðλÞi where j0i is some fixed starting state.
The variational principle justifies the entire VQE pro-
cedure: writing Emin for the ground state eigenvalue of
H, we have that EðλÞ ≥ Emin with equality if and only if
jψðλÞi is the ground state.
Each expectation hψðλÞjPijψðλÞi is directly estimated

using statistical sampling [12]. The circuit used has extra
depth D ¼ Oð1Þ beyond preparing jψðλÞi and is repeated
N ¼ Oð1=ϵ2Þ times to attain precision within ϵ of the
expectation. Henceforth, we refer to this N, D scaling with
ϵ as the statistical sampling regime.
Tunable Bayesian QPE (α-QPE): Since the introduc-

tion by Kitaev [13] of a type of iterative QPE involving a
single work qubit and an increasing number of controlled
unitaries following each measurement, the term QPE itself
has become associated with algorithms of this particular
type. It is characteristic of Kitaev-type algorithms that for
precision ϵ, the number of measurements N¼Õ(logð1=ϵÞ)
and maximum coherent depthD ¼ Õð1=ϵÞ, where the tilde
means we neglect further log factors. Henceforth, we refer
to this N, D scaling with ϵ as the phase estimation regime
and QPE as phase estimation in this regime.
For a given eigenvector jϕi of a unitary operator U

such that Ujϕi ¼ eiϕjϕi, ϕ ∈ ½−π; πÞ, Kitaev’s QPE
algorithm uses the circuit in Fig. 1 with two settings of
Mθ ∈ f0;−π=2g. For each setting, N ¼ Õ( logð1=ϵÞ)
measurements are taken withM ¼ 2m−1; 2m−2;…; 1 in that
order to estimate ϕ to precision ϵ≡ 2−m. In Kitaev’s

algorithm, “precision ϵ” means “within error ϵ above a
constant level of probability.” The coherent circuit depth D
required is therefore

D ¼ Õ

�Xm−1

j¼0

2j
�

¼ Õð2mÞ ¼ Õð1=ϵÞ: ð3Þ

This accounting associates to U2j a circuit depth of
Oð2jÞ. For generic U ¼ expð−iHtÞ, any better accounting
is prohibited by the “no-fast-forwarding” theorem [14].
We do not consider special U such that U2j has better
accounting (e.g., modular multiplication in Shor’s algo-
rithm [15]).
Under the framework of Kitaev’s QPE, Wiebe and

Granade [10,16] introduced a Bayesian QPE named rejec-
tion filtering phase estimation (RFPE) that we now modify
to yield different sets of circuit and measurement sequences
that can provide the same precision ϵ with different ðN;DÞ
trade-offs. It is these sets that are parametrized by the
α ∈ ½0; 1�. The circuit for RFPE is given in Fig. 1 and the
following presentation of RFPE and our modification is
broadly self-contained.
To begin, a prior probability distribution PðϕÞ of ϕ is

taken to be normal N ðμ; σ2Þ (some justification is given in
Ref. [17], which empirically found that the posterior of a
uniform prior converges rapidly to normal). From the RFPE
circuit in Fig. 1, we deduce that the probability of
measuring E ∈ f0; 1g is

PðEjϕ;M; θÞ ¼ 1þ ð−1ÞE cos½Mðϕ − θÞ�
2

; ð4Þ

which enters the posterior by the Bayesian update rule,

PðϕjE;M; θÞ ∝ PðEjϕ;M; θÞPðϕÞ: ð5Þ

We do not need to know the constant of proportionality
to sample from this posterior after measuring E, and the
word rejection in RFPE refers to the rejection sampling
method used. After obtaining a number s of samples, we
approximate the posterior again by a normal with mean and
standard deviation equal to that of our samples (again

FIG. 1. Circuit for Kitaev’s phase estimation and RFPE. Here,
jϕi is an eigenstate of U with eigenphase ϕ, jþi is the þ1

eigenstate of X, ZðMθÞ ≔ diagð1; e−iMθÞ, and measurement is
performed in the X basis.
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justified as when taking initial prior to be normal). The
choice of s is important and s can be regarded as a particle
filter number, hence the word filter in RFPE [16]. We
constrain posteriors to be normal because normal distribu-
tions can be efficiently sampled.
The effectiveness of RFPE’s iterative update procedure

just described depends on controllable parameters ðM; θÞ.
A natural measure of effectiveness is the expected posterior
variance, i.e., the “Bayes risk.” To minimize the Bayes risk,
Ref. [10] chooses M ¼ ⌈1.25=σ⌉ at the start of each
iteration. However, the main problem is thatM can quickly
become large, making the depth of UM exceed Dmax.
Reference [16] addresses this problem by imposing an
upper bound on M and we refer to this approach as RFPE
with restarts.
Here, we propose another approach that chooses

ðM; θÞ ¼
�
1

σα
; μ − σ

�
; ð6Þ

where α ∈ ½0; 1� is a free parameter we impose. Moreover,
we propose a new preparation of eigenstate jϕi at each
iteration, discarding that used in the previous iteration. This
ability to readily prepare an eigenstate is highly typical but
can be achieved within the VQE framework (see next
section). We name the resulting, modified RFPE algorithm
α-QPE. In proposition 1 below, we give the main perfor-
mance result about α-QPE. We defer its derivation to
Supplemental Material [18]. Unlike in Kitaev’s algorithm,
we henceforth let precision ϵ mean an expected posterior
standard deviation of ϵ [21].
Proposition 1. (Measurement-depth trade-off). For

precision ϵ, α-QPE requires N ¼ fðϵ; αÞ measurements
and D ¼ Oð1=ϵαÞ coherent depth, where the function f is
defined in Eq. (1).
We now address the essential question of how to choose

α when practically constrained to circuits with bounded
depth D ∈ ½1; Dmax� for some Dmax. For simplicity, we
assume D ¼ 1=ϵα. Optimally choosing α amounts to
minimizing the number of measurements N to achieve a
fixed precision ϵ ∈ ð0; 1Þ. Then, because N ¼ fðϵ; αÞ is a
decreasing function of α, the least N is attained at the
maximal α ¼ αmax ≔ min f½logðDmaxÞ�=½logð1=ϵÞ�; 1g,
giving Nmin ¼ fðϵ; αmaxÞ, which equals

2
1−logðDmaxÞ= logð1=ϵÞ

h�
1

ϵDmax

�
2
− 1

i
if Dmax < 1

ϵ

4 log
�
1
ϵ

�
if Dmax ≥ 1

ϵ

: ð7Þ

The important point here is the inverse quadratic scaling
with Dmax if Dmax < 1=ϵ: through α we can access and
exploit Dmax to significantly reduce the number of iter-
ations. In Supplemental Material [18], we deduce from our
above analysis that RFPE is at least as efficient as Eq. (7).

Casting expectation estimation as α-QPE: Given a
Pauli operator P, a preparation circuit RðλÞ≡ R∶ j0i ↦
jψðλÞi≡ jψi, and a projector Π ≔ I − 2j0ih0j, we para-
phrase from Knill et al. [11] the following proposition 2
relevant to us.
Proposition 2. (Amplitude estimation). The operator

U ≔ U0U1, with U0 ¼ ðRΠR†Þ, U1 ¼ ðPRΠR†P†Þ, is a
rotation by an angle ϕ ¼ 2 arccosðjhψ jPjψijÞ in the plane
spanned by jψi and jψ 0i ≔ Pjψi. Therefore, the state jψi is
an equal superposition of eigenstates j � ϕi of U with
eigenvalues e�iϕ, respectively (i.e., eigenphases �ϕ) and
we can estimate jhψ jPjψij ¼ cosð�ϕ=2Þ to precision ϵ by
running QPE on jψi to precision 2ϵ.
Note that the VQE framework readily provides RðλÞ,

which enables our use of proposition 2. We now modify
proposition 2 to use α-QPE, which enables access to the
measurement-depth trade-off given in proposition 1. Since
α-QPE requires repreparation of state j � ϕi at each
iteration, a complication arises because jψi is in equal
superposition of j � ϕi. To be able to efficiently collapse
jψi into one of j � ϕi with high confidence before each
iteration in α-QPE, we have to assume that jAj is always
bounded away from 0 and 1 by a constant δ > 0, where
A ¼ hψ jPjψi (see Ref. [11] [parallelizability]). If we
collapse into jϕi (with high confidence), we implement
α-QPE using (powers of) c-U; or else if we collapse into
j − ϕi, we use c-U†. The depth overhead of state collapse is
Oð1=δÞ. A second complication is that ϕ gives jAj but not
the sign of A.
These two complications can be simultaneously resolved

using a simple two-stage method. In the first stage, A is
roughly estimated by statistical sampling a constant num-
ber of times to determine whether jAj satisfies a δ bound. If
so, proceed with α-QPE, or else continue with statistical
sampling in the second stage. The first stage simultane-
ously determines the sign of A. In Supplemental Material
[18], we present further details of this method.
The overhead in implementing c-U ¼ Rðc-ΠÞR†

PRðc-ΠÞR†P is documented as follows. Since P is n
tensored Pauli matrices, it can be implemented using n
parallel Pauli gates in Oð1Þ depth. The (nþ 1)-qubit con-
trolled sign flip c-Π is equivalent in cost, up to ∼2n single
qubit gates with Oð1Þ depth, to an (nþ 1)-bit Toffoli gate,
the best-known implementation of which requires 6n − 6
CNOT gates [22], ⌈ðn − 2Þ=2⌉ ancillas, and OðlognÞ circuit
depth [23]. Lastly, we need two R and two R† ≡ R−1. Since
the depthCR ofR isΩðnÞ in most applications considered so
far [24], this last overheadmay be themost significant.As the
total overhead has no ϵ dependence, it does not affect our
analysis in terms of ϵ.
Generalized α-VQE: We define generalized α-VQE as

VQE but with its expectation estimation subroutines cast as
α-QPE in the manner above. Figure 2 illustrates the
schematic of our generalized VQE.
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The total number of measurements in an entire run
of α-VQE is of order fðϵ; αÞmultiplied by both the number
of summed terms in the Hamiltonian and the number of
iterations of the classical optimizer. Writing CR for the
depth of RðλÞ, each measurement results from a circuit of
depth O(ðCR þ log nÞ=ϵα).
Clearly, α-VQE still preserves the following three key

advantages of standard VQE because we only modified
the expectation estimation subroutine. First, we can
parallelize the expectation estimation of multiple Pauli
terms to multiple processors. Second, robustness via
self-correction is preserved because α-VQE is still varia-
tional [6,7]. Third, the variational parameter λ can be
classically stored to enable straightforward repreparation
of jψðλÞi [8].
α-VQE as accelarated VQE.—We reiterate that α-VQE is

useful because it can perform expectation estimation in
regimes lying continuously between statistical sampling
and phase estimation. Neither extreme is ideal: statistical
sampling requires N ¼ Oð1=ϵ2Þ samples whereas phase
estimation requires D ¼ Oð1=ϵÞ coherence time. In this
manner, these two extremes have been criticised in
Ref. [25] and Refs. [3,6], respectively, and compared
in Ref. [8].
The resources required for one run of expectation

estimation within VQE and α-VQE (arbitrary α, α ¼ 0,

α ¼ 1) are compared in Table I. Neglecting the small
overheads to cast expectation estimation as α-QPE, we can
conclude that our method of expectation estimation is
always superior to statistical sampling for α > 0.
To use α > 0, we need sufficiently large Dmax.

Conversely, given Dmax we can choose an α to maximally
exploit it. Doing so yields the acceleration quantified by
Eq. [7]. This provides the mechanism by which α-VQE
accelerates VQE. The acceleration is quantified by Eq. (7).
We plot Eq. (7) in Fig. 3 to give a concrete sense of our
contribution.
At a more theoretical level, we note that our letter can be

viewed outside the VQE context as a study of efficient
expectation estimation under restricted circuit depth.
Furthermore, our study of α-QPE can be viewed as a
study of phase estimation under restricted circuit depth.
Subsequently to our letter, Ref. [26] also studied this latter
question, proposing and analyzing a time series estimator
that learns the phase with similar efficiency as our results.
More precisely, their efficiency Eq. (22) conforms to our
Eq. (7) up to log factors.

FIG. 2. Schematic of α-VQE. Note that λ also affects α-QPE
circuits, which involve state preparation RðλÞ and its inverse.
When α ¼ 0, we are in the statistical sampling, or standard VQE,
regime. When α ¼ 1, we are in the phase estimation regime.

TABLE I. Resource comparison of one expectation estimation subroutine within VQE, 0-VQE, 1-VQE, α-VQE. ϵ is the precision
required for the expected energy, CR is the state preparation depth, and α ∈ ½0; 1� is the free parameter controlling the maximum circuit
depth of α-QPE.

Algorithm Maximum coherent depth Noncoherent repetitions Total runtime

VQE OðCRÞ Oð1=ϵ2Þ O½CRð1=ϵ2Þ�
0-VQE OðCR þ log nÞ Oð1=ϵ2Þ O(ðCR þ log nÞð1=ϵ2Þ)
1-VQE O(ðCR þ log nÞð1=ϵÞ) O½logð1=ϵÞ� O(ðCR þ log nÞð1=ϵÞ)
α-VQE O(ðCR þ log nÞð1=ϵαÞ) O(fðϵ; αÞ) O(ðCR þ log nÞð1=ϵαÞfðϵ; αÞ)

FIG. 3. Plots of the function in Eq. (7) for different Dmax
demonstrate how α-VQE accelerates VQE by reducing the
number of measurements up to exponentially as Dmax increases.
Also plotted are the statistical sampling and phase estimation
regimes. α-VQE unlocks regimes in the shaded region between
these two extremes.
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