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Maximally entangled two-qubit states (Bell states) are of central importance in quantum technologies.
We show that heralded generation of a maximally entangled state of two intrinsically open qubits can be
realized in a one-dimensional (1D) system through strong coherent driving and continuous monitoring.
In contrast to the natural idea that dissipation leads to decoherence and so destroys quantum effects,
continuous measurement and strong interference in our 1D system generate a pure state with perfect
quantum correlation between the two open qubits. Though the steady state is a trivial product state that has
zero coherence or concurrence, we show that, with carefully tuned parameters, a Bell state can be generated
in the system’s quantum jump trajectories, heralded by a reflected photon. Surprisingly, this maximally
entangled state survives the strong coherent state input—a classical state that overwhelms the system. This
simple method to generate maximally entangled states using classical coherent light and photon detection
may, since our qubits are in a 1D continuum, find application as a building block of quantum networks.
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Quantum entanglement between two qubits is essential
for quantum computing and indeed for quantum informa-
tion processing more generally [1]. Bell states, which are
maximally entangled two-qubit states, have perfect quan-
tum correlations and are therefore especially important. The
most common way to generate Bell states is to measure a
joint property of two components and has been realized
in several systems including, for example, trapped atoms,
NV centers, quantum dots, and superconducting qubits (for
reviews see Refs. [2–4]). Finding a variety of ways of
making Bell states, particularly ones that use different
resources, is important in advancing quantum information
in new directions. Since it is natural to suppose that
classical resources decrease the coherence needed for
entanglement, it is particularly interesting to produce
Bell states using classical resources while reducing the
quantum input to a minimum.
A new platform named waveguide QED has recently

been realized in which qubits strongly couple to photons
confined in a one-dimensional (1D) waveguide [5–9]. This
platform has potential applications in integrating quantum
components into complex systems, such as quantum net-
works [10,11]. In this Letter, we introduce a novel way of
generating a Bell state of two qubits coupled to a 1D
waveguide: classical light plus photon detection leads to
entanglement generation heralded by a reflected photon.
Previous results concerning entanglement in waveguide
QED [12–27] have shown through analysis of the con-
currence, entangled state population, or scattered wave
function that a degree of entanglement between qubits can
be generated using the effective interactions mediated by
the waveguide. We show that, under continuous monitor-
ing, maximal entanglement can be generated using the

strong interference of photons in 1D and photon detection.
This maximally entangled state is heralded by detection of
a reflected photon, which makes it attractive for potential
applications.
The driving in our system is a strong coherent state—a

classical state that overwhelms the whole system. But
surprisingly the Bell state survives this classical compo-
nent. What is more surprising and intriguing is that the
steady state of the qubits is a trivial product state, which
has no coherence or concurrence. The continuous mon-
itoring unravels this trivial state such that its trajectories
are nontrivial. This “magical” unravelling provides a
particularly sharp illustration of the significance of the
information gained about quantum systems by measure-
ment, which has wide-reaching implications for advanc-
ing the understanding of quantum information and open
quantum system.
Seemingly trivial steady state.—The system we want to

study, shown in Fig. 1, consists of two identical qubits
coupled to a 1D waveguide under resonant driving by a
coherent state. The input coherent state jαi has frequency k,
and the qubits with frequency ωeg ¼ k and raising (low-
ering) operators σ�i (i ¼ 1, 2) are separated by distance L.
After tracing out the waveguide degrees of freedom making
the Markov and rotating wave approximations, the two
qubits can be described by a master equation of Lindblad
form (see, e.g., Refs. [12,13,17,28,29])

d
dt

ρ ¼ i½ρ; Hd þHqq� þ
X
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The coherent evolution here has two parts, one describing
the drive Hd ¼ gαðσþ1 þ σþ2 e

ikLÞ þ H:c: with coupling
strength g, and the other Hqq ¼ Ωðσþ1 σ−2 þ σþ2 σ

−
1 Þ describ-

ing a waveguide-mediated qubit-qubit interaction of
strength Ω ¼ 2πg2 sinðkLÞ. In the incoherent Lindblad
part, the individual decay rate of each qubit is Γ11 ¼
Γ22 ≡ Γ ¼ 4πg2, and the cooperative decay Γ12 ¼ Γ21 ¼
4πg2 cos ðkLÞ is a waveguide-mediated incoherent coupling.
The validity of the rotating wave and Markov approxima-
tions requires Γ≪ωeg and ΓL ≪ 1; thus, kL∼1 is clearly
in the regime of validity.
In the strong driving limit α ≫ g (driving power ≫ Γ),

by letting dρ=dt ¼ 0 we obtain a trivial steady state in
which the density matrix is an identity matrix. We consider
kL ≠ nπ where n is an integer, in which case the steady
state ρ∞ ¼ ðjeeiheej þ jegihegj þ jgeihgej þ jggihggjÞ=4
is an identity matrix in the space spanned by fjeei; jegi;
jgei; jggig. [For kL ¼ nπ where n is an even (odd) integer,
the steady state starting from the ground state is an identity
matrix in the space spanned by fjeei; jggi; jSiðjAiÞg where
the symmetric and antisymmetric states are jSiðjAiÞ≡
ðjegi � jgeiÞ= ffiffiffi

2
p

.] This density matrix can be written
simply as ρ∞ ¼ ð11 ⊗ 12Þ=4where 1i is the identity matrix
in the Hilbert space of ith qubit. Therefore, the steady
state has no entanglement (concurrence C ¼ 0 [30]) since
it can be written as a product state and no coherence since
there is no off-diagonal element. The qubit-qubit inter-
action mediated by the waveguide usually exploited to
generate entanglement (see, e.g., Ref. [13]) is completely
washed out by the classical driving and dissipation.
However, the system’s trajectories can be nontrivial, as
we now show.
Entanglement within trajectories.—Our description in

terms of a master equation is similar to that used for open
quantum systems [31]. In that context, the interaction
between system and environment typically generates entan-
glement between them, and then a trace over the environ-
mental degrees of freedom yields a mixed state for the
system. During the partial trace, some information is lost as
attested by the nonzero von Neumann entropy of the mixed
state. However, under continuous monitoring, a mixed state
can be unraveled as an ensemble of pure states (quantum
trajectories) [32–34]. Unlike the mixed state, this ensemble
gives a complete description of the open quantum system
under continuous monitoring.
Within the quantum trajectory description, mixed state

entanglement can be defined without ambiguity as the
average of pure state entanglement as follows [35]. Denote
the ensemble of trajectories by f ffiffiffiffiffi

pi
p jψ iig, where pi is the

probability of trajectory jψ ii being detected, and form
ρ ¼ P

ipijψ iihψ ij. If we divide the open system into
subsystems A and B, the entanglement between A and B
within the ith trajectory is defined through the usual
von Neumann entropy as Si ¼ −TrðρAi log2 ρAi Þ with

ρAi ¼ TrBðjψ iihψ ijÞ. The entanglement in the ensemble is
defined naturally as the average, S̄≡P

ipiSi.
It has been shown that measuring different quantities

leads to different amounts of entanglement by unraveling
with different ensembles of trajectories [35–39]. For exam-
ple, the trivial steady state above, ρ∞ ¼ ð11 ⊗ 12Þ=4, can be
unraveled nontrivially as either the ensemble f1

2
jΦþi;

1
2
jΦ−i; 1

2
jΨþi; 1

2
jΨ−ig or f1

2
jggi; 1

2
jeei; 1

2
jΨþi; 1

2
jΨ−ig,

where jΦ�i ¼ ðjggi � jeeiÞ= ffiffiffi
2

p
and jΨ�i ¼ ðjgei �

jegiÞ= ffiffiffi
2

p
are the four conventional Bell bases. The former

ensemble yields S̄ ¼ 1 while the latter gives S̄ ¼ 1=2 even
though they both produce the seemingly trivial mixed
state ρ∞.
Waveguide mediated collective jumps.—Returning to

our system, we suppose that photon counting measure-
ments are performed at both ends of the waveguide, as
shown in Fig. 1. As shown in our previous work [29], the
photon detections at the left and right end can be described
as discrete changes (quantum jumps) of quantum trajecto-
ries through the jump operators J−L and J−R defined as

J−L ≡ ffiffiffiffiffiffi
2π

p
gðσ−1 þ σ−2 e

ikLÞ;
J−R ≡ ffiffiffiffiffiffi

2π
p

gðσ−1 þ σ−2 e
−ikLÞ þ i

αffiffiffiffiffiffi
2π

p : ð2Þ

Note that J−R incorporates interference between the driving
field α and the qubit emission. The master equation for
the two qubits, Eq. (1), can be rewritten in an equivalent
form as

d
dt

ρ ¼ i½ρ; Hh� þ
X

i¼R;L

J−i ρJ
þ
i −

1

2
fρ; Jþi J−i g; ð3Þ

where Hh ¼ Hqq þ 1
2
gαðσþ1 þ σþ2 e

ikLÞ þ H:c: [29]. Based
on the jump operator [Eq. (2)] that corresponds to photon
detection, quantum jump formalism [34] then yields
quantum trajectories described by the stochastic
Schrödinger equation (SSE)

djψðtÞi ¼
X

i¼L;R

dNiðtÞ
�

J−iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJþi J−i i

p − 1

�
jψðtÞi

þ
� ð1 − idtHeffÞ
jð1 − idtHeffÞjψðtÞij

− 1

�
jψðtÞi; ð4Þ

FIG. 1. Schematic of two qubits coupled to a 1D waveguide.
We have a right-going coherent state as input from the left end.
Transmitted and reflected photons are measured using photon
counting detection at the right and left end, respectively.
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where dNiðtÞ ¼ 0, 1 describes the stochastic process of a
photon being detected with probability hdNiðtÞi ¼
dthψðtÞjJþi J−i jψðtÞi, dt is the time step, and Heff ≡Hh −
1
2

P
i¼R;LJ

þ
i J

−
i is the non-Hermitian effective Hamiltonian

describing the segments of continuous evolution.
It is intriguing that the left jump operator here,

J−L ∼ ðσ−1 þ eikLσ−2 Þ, can produce a jump J−L jeei → ðjgei þ
eikLjegiÞ that yields a maximally entangled state. This
derives from the fact that detection of a reflected
photon necessarily comes from a coherent superposition
of the emission from both qubits, i.e., jeei → jgei and
jeei → jegi. This route to entanglement generation is in the
same spirit as the scheme proposed in Ref. [40]. Note the
following two requirements. (i) To realize this jump
process, the jump must start from jeei or superpositions
of jeei and eigenstates of J−L with vanishing eigenvalues.
(ii) To make this maximally entangled state available for
exploitation, it must not be destroyed for some time by the
dynamics, such as the continuous evolution or subsequent
jumps. We now show that when kL ¼ ðnþ 1=2Þπ and the
driving jαi is strong, these two requirements can be met.

Hybridizing jumps and state diffusion.—In the strong
driving limit α=g → ∞, each right jump leads to an
infinitesimal change of the wave function, since the
right jump operator J−R is dominated by the constant
term. However, within a time step dt there will be
infinitely many right jumps due to the large photon flux
given by the strong coherent state. Therefore, the
quantum trajectory will be continuous, as in classic
homodyne detection [34] when left jumps are absent
and the photon current is measured. Then, the number
of right jumps detected in a time step, denoted dNRðtÞ,
can be written as

dNRðtÞ ¼ hdNRðtÞi þ
jαjffiffiffiffiffiffi
2π

p dξðtÞ; ð5Þ

where dξðtÞ is stochastic noise. Since the coherent state
dominates the signal detected, Gaussian noise with
hdξðtÞi ¼ 0 and hdξðtÞ2i ¼ dt is a good approximation.
By expanding in 1=jαj, the SSE Eq. (4) is simplified to
(for details, see Supplemental Material [41])

djψ̃ðtÞi ¼ dt

�
−iðgαcþ þ gα�c− þHqqÞ − ie−iθπg2hðieiθcþ − ie−iθc−Þic− − πg2cþc− −

1

2
JþL J

−
L

�
jψ̃ðtÞi

þ dξðtÞð−ie−iθ
ffiffiffiffiffiffi
2π

p
gc−Þjψ̃ðtÞi þ dNLðtÞ

�
J−Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJþL J−Li

p − 1

�
jψ̃ðtÞi; ð6Þ

where jψ̃i is an unnormalized wave function, α ¼ jαjeiθ,
h·i ¼ hψ j · jψi, and c� ≡ ðσ�1 þ e�ikLσ�2 Þ is the operator
part of J−R such that J−R ¼ ffiffiffiffiffiffi

2π
p

gc− þ iα=
ffiffiffiffiffiffi
2π

p
. If the left

jumps are dropped, note that this SSE becomes a quantum
state diffusion equation with fluctuations given by a Weiner
process dξðtÞ.
Heralded Bell state.—Wewish to focus on the case kL ¼

ðnþ 1=2Þπ, where n is an even (odd) integer, and define
two maximally entangled states j�ii≡ ðjgei�ijegiÞ= ffiffiffi

2
p

(Bell states). Then, the operator c− (J−L) is a lowering
operator in the space spanned by fjeei;j−ii; jggig while
J−L (c−) is a lowering operator in the space spanned
by fjeei; jþii; jggig. In the following, we let kL ¼ π=2;
i.e., the qubit separation is a quarter wavelength. For other
even n, the conclusions are the same; for odd n, they hold
upon switching the roles of j�ii.
The energy level diagram for kL ¼ π=2 is shown in

Fig. 2(a). The quantum diffusion process given by the
operator c� causes jggi ↔ j−ii ↔ jeei, and the left jump
process causes jeei → jþii → jggi. Thus, the two max-
imally entangled states j�ii are dynamically separated. The
ground state of the qubits jggi will be driven to the excited
state jeei, from which there is a finite probability for a left
jump. In that case, the two qubits jump to the maximally

entangled state jþii, while at the same time a left-going
(reflected) photon is detected. The qubits will stay in jþii
until a second left jump occurs, taking the qubits back to
jggi. The whole process then repeats. Thus, there are
repeated windows of maximally entangled state jþii,
whose lifetime is 1=hþijJþL J−L jþii ¼ 1=Γ, each heralded
by a reflected photon.

(a) (b)

FIG. 2. (a) Energy level diagram for kL ¼ π=2. Red and
blue arrows represent left jumps and driving, respectively,
j�ii≡ ðjgei�ijegiÞ= ffiffiffi

2
p

, J−L is the left jump operator, and c�
comes from the right jump operator J−R. The effective qubit-
qubit interaction Hqq is suppressed by the strong driving.
(b) Second order correlation function for the reflected
photons calculated from input-output theory. (Parameters:
kL ¼ π=2, α ¼ 100.)
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An example trajectory is shown in Fig. 3(a) for α ¼ 100.
There are clearly time windows of maximal entanglement,
whose birth and death are heralded by the detection of
reflected photons. The populations of the energy levels
show that the qubits are in the jþii state in the maximal
entanglement windows and are dynamically decoupled
from the other three levels in these windows. The small
deviations from maximal entanglement that can be seen are
due to the effective qubit-qubit interaction term Hqq that
exchanges excitations between the two qubits and so leads
to the process jþii ↔ j−ii. This term (∼g2) is suppressed
by the strong driving term (∼gjαj) as shown in the
Supplemental Material [41], which is the reason why
strong driving is needed. Outside the windows of maximal
entanglement, the dynamics is dominated by Rabi oscil-
lations in a three-level system with fluctuations coming
from the Weiner process.
This special dynamics is encoded in the behavior of the

second-order correlation function gð2ÞL ðτÞ of the reflected

light, shown in Fig. 2(b). gð2ÞL starts at 1 and then oscillates
at the Rabi frequency with an envelope that decays in a time
of order Γ−1. It is bounded by 2 and reaches maximal points
when jggi is driven to jeei (see Supplemental Material [41]
for details).
When parameters are detuned from their ideal values

(either k or L), the dynamics becomes more complicated
than shown in Fig. 2(a), with for instance a (weak) direct
connection between the left and right sides. For small
detuning, the dynamics will be qualitatively similar; we
leave a quantitative study of these features to future work.
Imperfect photon detection.—To understand the role and

importance of the information gained by observing a
quantum system, we introduce information loss through
imperfect photon detection. The effect of such loss is
modeled using the jump operators

ffiffiffiffi
ηi

p
J−i , where i ¼ R;L

and ηi < 1 is the efficiency of photon detection [34]. Then
the SSE (6) becomes a stochastic master equation (SME)
(for details see the Supplemental Material [41]),

dρ̃sðtÞ ¼ dt

�
i½ρ̃s; Hqq þ gα�c− þ H:c:� þ ð1 − ηLÞJ−L ρ̃sJþL þ 2πg2c−ρ̃scþ −

1

2
fρ̃s; JþL J−L þ 2πg2cþc−g

�

þ dξðtÞ ffiffiffiffiffi
ηR

p ð−ie−iθ
ffiffiffiffiffiffi
2π

p
gc−ρ̃s þ H:c:Þ þ dNLðtÞ

�
J−L ρ̃sJ

þ
L

Tr½J−L ρ̃sJþL �
− ρ̃s

�
; ð7Þ

for trajectories of mixed states ρ̃s [42] due to loss of
information about the system. The probability of photon
detection now becomes hdNLi ¼ ηLdtTr½ρsJþL J−L � in terms
of the normalized density matrix ρs ¼ ρ̃s=Tr½ρ̃s�. Other
information loss mechanisms, such as the coupling of
the qubits to channels other than the waveguide, can be
taken into account by simply adding additional Lindbladian
dissipators to Eq. (7); however, this will produce no
qualitative change in our results and so is left to the
interested reader.
We quantify the entanglement for each mixed trajectory

using the entanglement of formation SF [30]. To define SF,
consider a “purification” of a mixed state, by which is
meant a pure state of the system plus environment that
yields the known mixed state through partial trace. The
entanglement entropy of a purification is simply that of the
two qubits, S̄, conditioned on measurement of the envi-
ronment (photon detection here). The entanglement of
formation SF is the minimum entanglement entropy for
all possible purifications of a mixed state, and so gives a
lower bound on the entanglement contained in a mixed
trajectory. A subtle point should be emphasized here:
information gained about a quantum system constrains
possible purifications and therefore gives a different lower
bound. For our system (assume ηi ¼ η for now), for
example, if η ¼ 0, i.e., no photons are measured so no

information is gained, Eq. (7) becomes Eq. (3) whose
steady state is ð11 ⊗ 12Þ=4 and SF ¼ 0. As η increases,
more information is gained and the number of possible
purifications decreases. When η ¼ 1, Eq. (7) becomes
Eq. (6), which becomes the only way to purify given the
physical setup.
An example trajectory for η ¼ 0.95 is shown in Fig. 3(b).

As can be seen, the information loss leads to very different
behavior. In the first window, the entanglement SF and the
jþii population do not jump up to 1 as for perfect photon
detection. This is because there is a possibility that photons
have been emitted without being detected, as shown by the
term ð1 − ηLÞJ−L ρ̃sJþL in Eq. (7), which makes the trajectory
be in the space spanned by all four energy levels. When a
photon is detected, the trajectory is projected to a space
spanned by fjþii; jggig through processes jeei → jþii
and jþii → jggi. In the third window, although the qubits
jump to jþii, its population keeps decreasing with time.
This is because of the undetected decaying process
jþii → jggi.
Only one detector needed.—Even though the scheme

proposed here is not robust against photon detection loss
at the left end, it works independently of the photon
detection efficiency at the right end. It can be seen in
Eq. (7) that, as long as ηL ¼ 1, the continuous part
describes time evolution of a mixed state in the space
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spanned by fjeei; j−ii; jggig and the jump part still
describes detection of reflected photons, which project
the jeeiheej component onto a pure state jþii as shown in
Fig. 2(a) [41]. That is, the scheme still works even without
photon detection at the right end (ηR ¼ 0).
Conclusion and outlook.—In summary, we have shown

that for two qubits coupled to a waveguide separated by
ðn=2þ 1=4Þ wavelengths, a heralded Bell state can be
generated using classical driving and photon counting
detection. Although the steady state is a trivial product
state, the continuous monitoring unravels the master
equation such that a Bell state is dynamically decoupled
from the other three levels during the continuous part of the
evolution. Discrete jumps, heralded by detections of
reflected photons, project the wave function onto the
Bell state. This physical example that nonentangled mixed
states can have entangled trajectories calls for careful usage
of commonly used entanglement measures, such as con-
currence, especially when measurement is present. Since
the qubits are already in the continuum and coupled to
itinerant photons, the method presented here will have
particular application in integrating quantum components
into complex systems [10,11].
The importance of the information gained by observing a

quantum system is shown by introducing information loss
caused by imperfect photon detections. A small informa-
tion loss causes the quantum entanglement to behave very
differently. This implies that methods to stabilize the Bell
state, such as bath engineering [43], are needed in
applications.
In this Letter, the Markov approximation has been

applied, which is valid when the qubit separation is not
too large. It will be interesting to explore in the future the

effects caused by time delayed feedback in the non-
Markovian regime [16,17,44–50], which is important for
the generation of remote entanglement between qubits.
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