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Contextuality is a fundamental nonclassical property of quantum theory, which has recently been proven
to be a key resource for achieving quantum speed-ups in some leading models of quantum computation.
However, which of the forms of contextuality, and how much thereof, are required to obtain a speed-up in
an arbitrary model of quantum computation remains unclear. In this Letter, we show that the relation
between contextuality and a computational advantage is more complicated than previously thought. We
achieve this by proving that generalized contextuality is present even within the simplest subset of quantum
operations, the so-called single-qubit stabilizer theory, which offers no computational advantage and was
previously believed to be completely noncontextual. However, the contextuality of the single-qubit
stabilizer theory can be confined to transformations. Therefore, our result also demonstrates that the
commonly considered prepare-and-measure scenarios (which ignore transformations) do not fully capture
the contextuality of quantum theory.
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Introduction.—Contextuality [1–8], which includes the
better-known concept of Bell nonlocality as a special case,
is often regarded as the fundamental nonclassical property
of quantum theory. Furthermore, contextuality has emerged
as an intriguing explanation for the power of quantum
computation: Contextuality is required [9–12] to achieve an
exponential quantum speed-up by injecting magic states
into Clifford circuits [13], and it also quantifies the
computational advantage that can be obtained [11,14–17]
in both the magic-state and measurement-based models of
quantum computation [18].
In addition, contextuality has proved key in understand-

ing quantum correlations, formalized in the Cabello-
Severini-Winters graph formalism [8]. This formalism gives
experimentally testable contextuality inequalities [19–21],
parallelling nonlocality inequalities such as Clauser-Horne-
Shimony-Holt inequality [22,23]. Contextuality has also
found applications in quantifying the memory cost of
simulating quantum processes [24–26].
These considerations motivate us to understand the

scope of phenomena that exhibit contextuality, with the
aim of identifying which features of contextual phenomena
enable quantum computational speed-up. However, one
of the primary obstacles to understanding how contextual-
ity powers a quantum computer is that the multiqubit
stabilizer subtheory [27] exhibits contextuality and yet can
be efficiently simulated on a classical computer [28,29].
There are two leading definitions of contextuality:

traditional contextuality [1–5,8], often referred to as

Bell-Kochen-Specker contextuality, and generalized con-
textuality [6,7]. In this Letter, we show that generalized
contextuality [6] is present even in the single-qubit stabi-
lizer subtheory of quantum theory, a fact missed by
previous work [30–32]. We further demonstrate that
the contextuality present in the single-qubit stabilizer
subtheory can be confined to only appear in the trans-
formations. This contradicts the common—and often
implicit—assumption that an operational theory can be
classified as contextual or noncontextual by only consider-
ing the preparations and measurements [11,33–37].
Operational theories and ontological models thereof.—

An operational theory is noncontextual under a given
definition if there exists an ontological model of the
operational theory satisfying a specific property that we
describe below.
An operational theory is a mathematical framework for

predicting the outcomes of an experimental procedure, that
is, a sequence of preparations, transformations, and mea-
surements. These elements fully determine the experimental
statistics, that is, the conditional probabilities PrðkjP; T;MÞ
of observing the outcome k when the preparation P, trans-
formation T, and measurement M are performed sequen-
tially. In quantum mechanics, the conditional probabilities
for an experiment consisting of preparing a densitymatrix ρ,
applying a completely positive and trace-preserving (CPTP)
map Φ, and measuring a positive-operator-valued measure
(POVM) fEkg are Prðkjρ;Φ; EkÞ ¼ Tr½EkΦðρÞ� by the
Born rule.
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We can describe the underlying physical processes that
generate the experimental statistics using the ontological
model formalism. Here, we follow the treatment in
Ref. [38]. An ontological model is defined by a measurable
space Λ of possible physical states, with an associated
σ-algebra Σ, and sets of measures or measurable functions
over Λ are used to represent preparations, transformations,
and measurements in the ontological model. For simplicity,
we assume that there exists a measure that dominates all
other measures in the model [39] (see the Appendix for a
proof of the main theorem without this assumption). This
allows us to express an ontological model in terms of
probability densities, stochastic matrices, and response
functions.
When a system is prepared via some procedure P, the

physical properties of the system are probabilistically
assigned values, which are completely encoded by the
physical states λ ∈ Λ. Mathematically, we associate each
preparation procedure P with a probability density over Λ,
μP∶Λ → ½0; 1�, where

R
Λ μPðλÞdλ ¼ 1 as a system is

always in some physical state. In other words, the prob-
ability that a physical state, λ ∈ Λ, was prepared via P
is μPðλÞ.
Similarly, when a transformation is applied to a system,

the physical properties of the system dynamically evolve
according to some stochastic map. Formally, we associate
each transformation procedure T with a stochastic map
ΓT∶Λ × Λ → ½0; 1�, where the conditional probability that
some λ is sent to another λ0 by T is ΓTðλ0; λÞ. As every
physical state is mapped to some physical state by a
transformation,

R
Λ ΓTðλ0; λÞdλ0 ¼ 1 for all λ ∈ Λ.

Finally, when a system is measured via some procedure
M, the probability that outcome k occurs is specified by
the physical state. In other words, a measurement M is
equivalent to a set of conditional probability functions
fξMk ∶Λ → ½0; 1�gk. As some measurement outcome always
occurs,

P
kξ

M
k ðλÞ ¼ 1 for all λ ∈ Λ. To correctly reproduce

the experimental statistics of the operational theory, the
distributions must satisfy

PrðkjP; T;MÞ ¼
Z
Λ
ξMk ðλ0ÞΓTðλ0; λÞμPðλÞdλdλ0: ð1Þ

Ontological models are assumed, often implicitly [40], to
be convex linear; that is, a probabilistic implementation of a
set of operations is represented by the probabilistic mixture
of the corresponding probability densities.
Generalized contextuality.—We now review generalized

contextuality. The (experimental) setting of an operation is
the set of other operations that are performed with the
operation during an experiment. Two operations are opera-
tionally equivalent, denoted ≅, if they produce the
same outcome statistics in all settings. (i) Two preparations
P and P0 are equivalent, (P ≅ P0), if PrðkjP; T;MÞ ¼
PrðkjP0; T;MÞ ∀ T;M. (ii) Two transformations T and

T 0 are equivalent, (T ≅ T 0), if PrðkjP; T;MÞ ¼
PrðkjP; T 0;MÞ ∀ P;M. (iii) Two measurement outcomes
k ∈ M and k ∈ M0 are equivalent, [ðk;MÞ ≅ ðk;M0Þ], if
PrðkjP; T;MÞ ¼ PrðkjP; T;M0Þ ∀ P; T. Note that the def-
inition of operational equivalence differs slightly from that
of Ref. [6] in that we consider operational equivalence of
individual measurement outcomes. However, this defini-
tion can be obtained from that of Ref. [6] by coarse graining
all measurements into two-outcome POVMs [35,41,42].
An ontological model is preparation noncontextual

(PNC) if operationally equivalent preparation procedures
are represented by the same probability densities, that is,

μP ¼ μP0 ⇔ P ≅ P0: ð2Þ

Similarly, an ontological model is transformation non-
contextual (TNC) if

ΓT ¼ ΓT 0 ⇔ T ≅ T 0 ð3Þ

and measurement noncontextual (MNC) if

ξk;M ¼ ξk;M0 ⇔ ðk;MÞ ≅ ðk;M0Þ: ð4Þ

An ontological model is universally noncontextual, in the
generalized sense, if it satisfies Eqs. (2)–(4); otherwise it is
contextual [6].
Even a single qubit manifests generalized contextuality

[6]. However, previous proofs of generalized contextuality
for a single qubit have required subtheories strictly larger
than the single-qubit stabilizer subtheory.
Previous proofs of generalized contextuality have mostly

been focused on the prepare-measure setting, as defined in
[38], wherein transformations are considered part of a
preparation or measurement procedure, and systems are
discarded after measurement. However, this seemingly
innocuous operational assumption is insufficient to identify
an operational theory as noncontextual because the con-
textuality of the operational theory can be confined to
transformations, as we shall see is the case with the single-
qubit stabilizer subtheory.
Contextuality in the 8-state model.—We now show that

the 8-state model of the single-qubit stabilizer subtheory
exhibits transformation contextuality, a feature missed in
previous studies of this model [30–32]. The single-qubit
stabilizer subtheory consists of preparations and measure-
ments in the eigenbases of the single-qubit Pauli matrices
fX; Y; Zg, the group of unitary transformations that per-
mute the signed single-qubit Pauli matrices (i.e., the single-
qubit Clifford group) and convex combinations of these
operations. The single-qubit stabilizer subtheory has the
property that preparing an eigenstate of one Pauli matrix P
with eigenvalue η then measuring another PauliQ results in
the outcome η0 ¼ �η if P ¼ �Q and otherwise the out-
come is either eigenvalue with equal probability.
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The 8-state model, originally developed in Ref. [30], is a
natural ontological model for the single-qubit stabilizer
subtheory (see Fig. 1). It is defined by setting Λ ¼ f�1g×3
and writing λ ¼ ðx; y; zÞ, where x, y, and z are the
eigenvalues of X, Y, and Z, respectively. These ontic states
form the extremal points of the classical probability
simplex for three random binary variables. Preparing the
η eigenstate of X corresponds to setting x ¼ η and choosing
y and z uniformly at random, etc. Similarly, measuring X
returns the value of x, etc. This model is both preparation
and measurement noncontextual [30].
In the 8-state model, a transformation corresponds to a

permutation that acts on the hidden variable ðx; y; zÞ in the
same way that it acts on the Pauli operators ðX; Y; ZÞ. For
example, conjugation by X maps ðX; Y; ZÞ → ðX;−Y;−ZÞ,
so it is represented by the permutation ΓX∶ðx; y; zÞ →
ðx;−y;−zÞ, with the transformations for Y and Z defined
in a similar manner. Conjugation by the Hadamard matrix,

H ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
;

maps ðX; Y; ZÞ → ðZ;−Y; XÞ, so it is represented by the
permutation ΓH∶ðx; y; zÞ → ðz;−y; xÞ. Note that a Pauli
operation preserves the parity xyz and the Hadamard swaps
it (as does the phase gate P).
The 8-state model can be viewed as a conjunction of two

distinct generalized noncontextual 4-state Wigner functions
[11,30]. By extending the 4-state Wigner function to the
8-state model, all Clifford operations can be ontologically

represented. As we now show, this increase in the size of
the ontology causes the 8-state model to be transformation
contextual.
To show that the 8-state model is transformation con-

textual, let

T 1ðρÞ ¼ ½ρþ XρX þ YρY þ ZρZ�=4;
T 2ðρÞ ¼ HT 1ðρÞH: ð5Þ

These two transformations are operationally equivalent, as
T 1ðρÞ ¼ T 2ðρÞ ¼ I=2 for any input state ρ. However, by
convexity we have

ΓT 1
½ða; b; cÞ; ðx; y; zÞ� ¼

� 1
4

if xyz ¼ abc

0 otherwise;
ð6Þ

while, since the Hadamard swaps the sign of xyz,

ΓT 2
½ða; b; cÞ; ðx; y; zÞ� ¼

�
0 if xyz ¼ abc
1
4

otherwise:
ð7Þ

In other words, ΓT 1
≠ ΓT 2

, as illustrated in Fig. 1.
The single-qubit stabilizer subtheory is contextual.—

Above, we demonstrated that the 8-state model for the
single-qubit stabilizer subtheory is transformation contex-
tual. We now prove that there is no generalized non-
contextual model for the single-qubit stabilizer subtheory,
and hence that the single-qubit stabilizer subtheory is
contextual. The proof follows by reducing the ontic space
of a general preparation noncontextual model of the single-
qubit stabilizer subtheory to that of the 8-state model.
Theorem 1: Every ontological model of the single-

qubit stabilizer subtheory is either preparation or trans-
formation contextual.
Proof.—Fix an arbitrary preparation noncontextual onto-

logical model of the single-qubit stabilizer subtheory. Let
Δρ be the support of the quantum state ρ in the ontological
model; that is, the set of physical states ρ has some
possibility of preparing

Δρ ¼ fλjμρðλÞ > 0; λ ∈ Λg: ð8Þ

Deleting any ontic state λ ∈ Λ such that μI=2ðλÞ ¼ 0, we
can partition Λ into eight disjoint spanning sets from the
assumption of PNC [see Eqs. (11) and (83)–(87) in [6]],

Λx;y;z ¼ ΔðIþxXÞ=2 ∩ ΔðIþyYÞ=2 ∩ ΔðIþzZÞ=2: ð9Þ

As the model is preparation noncontextual, every quan-
tum state has a unique support. Hence, this partitioning is
unique.
Noting that preparing σ and then applying a trans-

formation T, which implements a CPTP map Φ, is a valid
preparation procedure for the stateΦðσÞ. It must be the case

FIG. 1. A graphical representation of the ontic space Λ of the 8-
state model, where the tuples ðx; y; zÞ index ontic states. The
green and blue tetrahedra are the simplices of the odd- and even-
parity ontic states, respectively. The stabilizer polytope is the
octahedron defined by the intersection of the two tetrahedra. The
transformation ΓT 1

from Eq. (6) maps any ontic state in one of
the tetrahedra to another ontic state in the same tetrahedra, while
the operationally equivalent transformation ΓT 2

from Eq. (7)
maps any ontic state to an ontic state in the opposite tetrahedra.
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that T maps the support of ρ to the support of ΦðρÞ in a
preparation noncontextual ontological model:

ΓT∶Δρ → ΔΦðρÞ: ð10Þ

Therefore, a Pauli X unitary must be represented by the
permutation τX∶Λx;y;z → Λx;−y;−z on the partition fΛx;y;zg.
Similarly, Pauli I, Y, and Z transformations must be
represented by the respective permutations τI∶Λx;y;z →
Λx;y;z, τY∶Λx;y;z → Λ−x;y;−z, and τZ∶Λx;y;z → Λ−x;−y;z.
Therefore, by convex linearity there exists an implementa-
tion of T 1 that has the same stochastic map as Eq. (6), when
defined over the coarse-grained sets Λx;y;z.
Similarly, for the Hadamard gate we have the map

τH∶Λx;y;z → Λx;−y;z. Therefore, there exists an implemen-
tation of T 2 that has the same stochastic map as Eq. (7),
when defined over the coarse-grained sets Λx;y;z. In other
words, T 1 ≅ T 2, and yet they cannot be represented by the
same stochastic map in any preparation noncontextual
model. □

We now show that any model of the single-qubit
stabilizer subtheory must be either traditionally contextual
[2] or transformation contextual. We do this by proving a
stronger result.
Theorem 2: Every ontological model of the single-

qubit stabilizer subtheory is either outcome indeterministic
or transformation contextual.
Proof.—The proof proceeds in the same manner as

Theorem 1, where now we assume outcome determinism
rather than preparation noncontextuality. By outcome
determinism, we can partition Λ into eight disjoint sets
according to measurement outcomes:

Λ̃X;Y;Z
xyz ¼ fλjξXx ðλÞ ¼ 1; ξYy ðλÞ ¼ 1; ξZz ðλÞ ¼ 1g;

where our choice of measurement contexts X, Y, and Z is
arbitrary and is merely used to partition Λ such that the
maps representing Clifford transformations are well
defined. Using the equivalent to Eq. (10) for measurements,
the maps ΓT 1

and ΓT 2
must be represented as stated in

Eqs. (6) and (7). □

Therefore, Theorem 2 implies that any traditionally
noncontextual ontological model of the single-qubit stabi-
lizer formalism—for example, Kochen-Specker’s original
model of a single qubit [2]—must be transformation
contextual, as traditional contextuality is implied by the
conjunction of outcome determinism and generalized
measurement noncontextuality [6]. Finally, we note that
Theorem 2 can be used to prove Theorem 1, as preparation
noncontextuality implies traditional contextuality for sharp
measurements [43].
Discussion.—In this Letter we have shown that the

single-qubit stabilizer subtheory, a very simple subtheory
of the smallest quantum system, exhibits generalized

contextuality. This demonstrates that generalized contex-
tuality is so prevalent that even an essentially trivial
quantum subtheory is classified as contextual and is
therefore nonclassical. The result shows that, unlike tradi-
tional contextuality which may be an important resource for
quantum speed-up, generalized contextuality is an
extremely weak notion of contextuality that exists in trivial
and classical-like models, such as the 8-state model. This
may reflect the fact that generalized contextuality is defined
in terms of a context dependence at the epistemic level,
rather than a context dependence at the ontological level.
The contextuality in the single-qubit stabilizer subtheory

is only apparent if all operations are accounted for, that is,
all stabilizer states, all stabilizer measurements, and the full
Clifford group. Therefore, a universally noncontextual
model can only be constructed for strict subtheories of
the singe-qubit stabilizer subtheory. For example, the
Hadamard and Phase gates are not elements of the toy
theory [44] or the standard Wigner function [45]; con-
versely, the Hadamard gate is an element of the rebit
subtheory [10], but Y eigenstates and Y measurements
are not.
Our result also demonstrates that the operational reduc-

tion of only considering preparations and measurements is
less robust than previously recognized. This reduction can
conceal key features of the model, such as the presence of
some forms of contextuality. It is an interesting open
problem to understand how and when this kind of reduction
can obscure such important conceptual features of an
operational theory. This insight regarding the key role of
transformations may have unexplored connections to
research the memory cost of quantum simulations [24–
26] and the formalism of computational mechanics [46,47].
Another possible route to investigate the role of trans-

formations in physical theories is the Choi-Jamiokowski
isomorphism. The isomorphism, in quantum theory, relates
transformations to states in a larger Hilbert space. Hence,
by using a similar isomorphism for ontological models, we
may be able to find a connection between the impossibility
of a universal noncontextual ontological model of the
single-qubit stabilizer subtheory and the impossibility of
a preparation noncontextual ontological model of the two-
qubit stabilizer subtheory [5,43].

We would like to thank Rob Spekkens, Stephen Bartlett,
Angela Karanjai, and Hammam Qassim for useful dis-
cussions. This research was supported by the Government
of Canada through the CFREF Transformative Quantum
Technologies program, the NSERC Discovery program,
and Industry Canada.

Appendix: Measure-theoretic treatment of theorem 1.—
We now prove Theorem 1 in the more general measure-
theoretic framework for ontological models (see [38]
definition 8.2).

PHYSICAL REVIEW LETTERS 122, 140405 (2019)

140405-4



Theorem 3: Every ontological model of the single-
qubit stabilizer subtheory is either preparation or trans-
formation contextual.
Proof.—To adapt the proof to the measure-theoretic

setting, we need to change the definition of support of a
quantum state as follows. Let Δρ be the support of the
quantum state ρ in the ontological model, that is, a (not
necessarily unique) set such that for all S ∈ Σ,

μρðSÞ
�¼ 1 if Δρ ⊆ S

< 1 otherwise:
ðA1Þ

As before we delete any measurable set S ∈ Σ such that
μI=2ðSÞ ¼ 0, then partition Λ into eight spanning sets that
intersect on sets of measure zero, from the assumption of
PNC [see Eqs. (11) and (83)–(87) in [6]). Having reduced
the model to a model over a finite set of states, the rest of
the proof follows as described in the main text. □
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