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We report fabrication of graphene devices in a Corbino geometry consisting of concentric circular
electrodes with no physical edge connecting the inner and outer electrodes. High device mobility is realized
using boron nitride encapsulation together with a dual-graphite gate structure. Bulk conductance
measurement in the quantum Hall effect (QHE) regime outperforms previously reported Hall bar
measurements, with improved resolution observed for both the integer and fractional QHE states. We
identify apparent phase transitions in the fractional sequence in both the lowest and first excited Landau
levels (LLs) and observe features consistent with electron solid phases in higher LLs.
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The quantum Hall effect (QHE), characterized by van-
ishing longitudinal resistance simultaneous with quantized
transverse Hall resistance [1,2], represents one of the most
robust examples of 2D topological phenomenon in which
an insulating bulk state with nontrivial topological order is
separated from the surrounding vacuum by conducting
edge modes [3]. The edge modes associated with the QHE
are chiral and therefore dissipationless at all length scales.
Moreover, the transverse Hall resistance, quantized in units
of h=e2, provides a direct measure of the topological order
and is insensitive to details of the sample geometry. In
samples with very low disorder, new correlated phases,
resulting from strong electron interactions, can be observed
outside of the integer quantum Hall effect (IQHE)
sequence. These include the fractional quantum Hall effect
(FQHE) liquid states [2,4], appearing at fractional Landau
filling, and with fractionally valued Hall resistance pla-
teaus, and interaction-driven electron solid phases, appear-
ing at fractional filling but with reentrant integer valued
Hall quantization [5–7].
Monolayer graphene has emerged as a versatile platform

to study the QHE, showing many of the same phenomena
that for a long timewere limited to very high mobility GaAs
heterostructures, while also introducing new opportunities
for manipulating these phases owing to the unique combi-
nation of a nontrivial π Berry phase, fourfold degeneracy
arising from the spin and valley isospin degrees of freedom,
and the ability to fabricate devices in a wide variety of
architectures [8–16]. Recent improvements in device
fabrication designed to eliminate impurity scattering in
sample bulk, such as use of boron nitride as an improved
substrate dielectric [17] and fully encapsulated geometries
[14,16,18], have enabled observation of some of the most
fragile ground states in the QHE regime [1,2,10,19]
including the even-denominator fractional quantum Hall

effect state [14,16,20] as well as various electron solid
phases [21,22]. Despite these advancements, the resolution
in transport measurement in conventional Hall bar geom-
etries is often overshadowed by measurements that probe
the bulk compressibility [12,14,15]. This result is puzzling
as it suggests that, contrary to conventional expectation, a
well-developed bulk gap alone is not a sufficient condition
to guarantee well-resolved transport measurement of the
corresponding edge modes.
In this work we investigate a less explored aspect of

QHE by studying the bulk property of graphene hetero-
structure using a Corbino geometry [23–28]. We demon-
strate a novel fabrication method that allows us to realize
concentric contacts in a dual graphite and hBN-encapsu-
lated geometry. The successful fabrication of high-quality
graphene Corbino disks allows us to resolve FQHE states
over larger filling fractions and to lower magnetic fields
than previously demonstrated in transport measurement of
conventional Hall bar geometries. Using this technique, we
identify apparent phase transitions in the FQHE sequence,
providing new insight about their ground state order in both
the lowest and first excited Landau levels (LLs), and
demonstrate features consistent with electron solid phases
in higher LLs. Our capability to detect QHE signatures with
higher resolution using the Corbino geometry, where bulk
response dominates, compared to Hall bar geometries,
where edge transport dominates, suggests that details of
the sample edge play a significant role in the Hall bar
response. This result has implications for all transport
measurements of 2D topological systems, and suggests
that our understanding of how to probe edge modes in 2D
materials may need to be revisited.
The device structure is illustrated in Fig. 1(a). The

heterostructure is assembled using the previously described
dry transfer technique [18] and includes both top and
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bottom graphite gates to screen remote impurities and
maximize channel mobility [14,16]. The challenge of
making electrical contact to the inner and outer edges of
the Corbino geometry is addressed by using a process
we refer to as a flip-stack technique [see Supplemental
Material (SM) for more details [29]]. In the final device
structure the aligned graphite gates define the carrier
density in the active region of the Corbino geometry
whereas the densities in the contact regions are tuned by
biasing the Si gate.
Figure 1(b) shows resistance versus channel density

acquired at T ∼ 2 K and B ¼ 0 T. The width of the charge
neutrality point resistance peak provides an estimate of
the charge inhomogeneity [18], and is found to be
6 × 109 cm−2 [Fig. 1(b)]. This is an order of magnitude
lower than previously reported in graphene devices without

graphite gates [18] but similar to what we measure in Hall
bar devices that include both top and bottom graphite gates
(see SM [29]).
Figure 1(c) shows the low magnetic field Shubnikov–de

Haas (SdH) oscillations for three representative densities.
Extraction of the quantum scattering time τq and LL
disorder broadening Γ from the corresponding Dingle plots
(see SM [29]) shows a relatively density-independent value
of τq ∼ 0.3 ps and Γ ∼ 13 K, except at very low densities
[Fig. SI7(c) of SM [29]] where Γ increases [red circles in
Fig. 1(c), left-hand inset]. An independent estimate of Γ
could be made from the onset of SdH oscillation, as
minimum in bulk conductance starts to develop when
the field-dependent cyclotron gap Δc exceeds the LL
disorder broadening Γ, where Γ ¼ ℏ=2τq and, for gra-

phene, Δc ∼ 400
ffiffiffiffiffiffiffiffiffiffi

BðTÞp ð ffiffiffiffiffiffiffijNjp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijN − 1jp Þ K. Γ esti-

mated from the onset of SdH oscillation is plotted as
black squares in Fig. 1(c), left-hand inset, showing excel-
lent agreement with the value calculated from τq. In both
measurements, Γ approaches a constant value of ∼13 K
away from the disorder regime, which is among the
smallest values reported for graphene, further confirming
the low bulk disorder in our sample. We note that near the
disorder regime at n ∼ 1010 cm−2, an insulating feature
corresponding to ν ¼ 2 QHE emerges at fields less than
B ∼ 15 mT [right-hand inset of Fig. 1(c)], which corre-
sponds to Γ ∼ 50 K and is consistent with the expected
behavior near the disorder regime.
Figure 2(a) shows a Landau fan diagram measured over

a larger density and field range. Several distinguishing
features are evident: the plot shows excellent ambipolar
response with both electron and hole features equally
resolved; the symmetry broken IQHE emerge at less
than B ¼ 1 T; and the FQHE is resolvable by B ¼ 5 T
[Fig. 2(b)]. This quality of QHE transport has been difficult
to achieve in Hall bar geometries, even when the sample
disorder is similar, as measured by zero field transport and
SdH characteristics (see SM [29]). Although bulk conduct-
ance measurement contains no information regarding the
quantized plateau in Hall resistance, FQHE ground states
could be identified by their filling fraction extracted from
the trajectory in a Landau fan diagram, where both density
and B field are varied.
The origin of the improved resolution obtained in our

Corbino geometry may be twofold. First, the Hall bar
measurement requires good electrical contact [35], since
the leads should be well equilibrated to the edge modes in
order to measure zero longitudinal resistance and accurate
Hall plateau. This is a less stringent requirement in the
Corbino geometry where QHE ground state appears as an
insulating feature in bulk conductance, even for highly
resistive contacts. Second, transport measurement of the
edge state may be complicated by details of the potential
profile near the graphene boundary [27,36], edge disorder
[37], and edge mode reconstruction [38].
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FIG. 1. Device geometry and low field characterization.
(a) Schematics of device geometry. (b) Bulk resistance as a
function of carrier density at T ¼ 2 K and B ¼ 0 T. (c) Two-
terminal bulk conductance Gxx as a function of B field measured
at different charge carrier densities n, at T ¼ 300 mK, showing
SdH oscillations. Left-hand inset: The disorder broadening Γ,
extracted from quantum lifetime τq (red circles) and the onset of
SdH oscillations (black squares) are plotted against carrier
density n. Right-hand inset: Low field bulk conductance Gxx
plotted versus n and B field at T ¼ 300 mK.
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The improved performance of the Corbino geometry
allows us to resolve the FQHE states in graphene to an
unprecedented degree, particularly in the high field-low
density limit. In Fig. 2(c) the bulk conductance Gxx is
plotted versus density at B ¼ 36 T. In both the N ¼ 0 LL
andN ¼ 1 LL, standard composite fermion (CF) sequences
are observed [39], including both even- and odd-numerator
FQHE states, indicating that all symmetries have been
lifted [17,40]. Figure 2(d) shows an expanded view in the
N ¼ 0 LL between ν ¼ 0 and ν ¼ 1. Two-flux CF states
(centered around ν ¼ 1=2) and four-flux CF states (cen-
tered around ν ¼ 1=4) up to denominator 15 are observed.
We note that based on the depth of the conductance
minima, the overall hierarchy appears remarkably elec-
tron-hole symmetric, further indicating that all symmetries
are lifted within the CF levels (this is confirmed
by activation gap measurements, which show a similar
hierarchy; see SM [29]). A different symmetry is observed
in the N ¼ 1 LL, suggesting that the spin and valley
degeneracy is only partially lifted, and an approximate
SU(2) or SU(4) symmetry is preserved for the composite
fermion ground states [10,15,40].
The persistence of the strongest FQHE states to low

magnetic fields allows us to measure how their gaps evolve
over a wide range of B. Figure 3(a) shows a plot of the
activation energy gap Δ versus B, for the ν ¼ 1=3 state. A
clear kink in the trend is observed at B ∼ 8 T, below which
the gap is best fit by a linear B dependence (blue dashed
line) and above which the gap transitions to a

ffiffiffiffi

B
p

dependence (blue solid curve). Notably, both the linear
and square-root fits extrapolate to Δ ∼ −10 K at B ¼ 0,
similar to the value of disorder broadening estimated from

the SdH behavior [Fig. 1(c)], providing a self-consistency
validation of the fits.
The transition in the B dependence of the gap resembles

similar behavior of the 1=3 FQHE state in GaAs quantum
wells, which was interpreted in the context of CF Landau
levels with spin degrees of freedom [41,42]. In the CF
picture, the effective cyclotron gap that separates spin-
degenerate CF LLs results from Coulomb interaction and is
given by [42] Δcyclotron

CF ¼ ðℏeB�=m�Þ, where B� ¼ B−
Bν¼1=2 is the effective magnetic field for CFs and m� ¼
αme

ffiffiffiffi

B
p

is the CF mass, me is the free-electron mass, and α
depends on details of the quantum well. Allowing for spin
degree of freedom, the CF LLs can split into spin branches,
separated by the Zeeman energy EZeeman

CF ¼ 1
2
μBgB, where

μB is the Bohr magneton and g is the Lande g factor. The
transition results from a CF LL crossing when the CF
Zeeman energy (linear in B) exceeds the CF cyclotron
energy (square root in B), as illustrated in Fig. 3(b). This
model well fits our data in the lowest LL. If we assume that
the linear trend correlates to a real spin gap, the slope gives
an estimate for the g factor of 8.5. This is approximately 4
times larger than the bare electron g factor (g ¼ 2), and is
indicative of strong exchange interaction and the
potential existence of skyrmion spin textures [43]. In this
picture we imagine that the valley degree of freedom is
frozen out [40] such that the square-root region corresponds
to the CF cyclotron gap. Fitting the above expression to this
region gives a CF mass term of α ¼ 0.054� 0.004.
Including the projected disorder broadening of ∼10 K,
this gives a measure of the intrinsic gap to be
Δ1=3 ¼ ð8.3� 0.6Þ ffiffiffiffi

B
p

K, or ð0.084� 0.004Þe2=ϵlB in
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FIG. 2. Fractional quantum Hall effect. (a) Bulk conductance Gxx, as a function of filling fraction ν and B field. (b) Gxx versus ν and B
at T ¼ 0.3 K for 0 < ν < 1. (c) Gxx as a function of filling fraction for the N ¼ 0 and N ¼ 1 LL, −6 < ν < 6. (d) High-resolution view
of one integer branch of the N ¼ 0 LL at B ¼ 36 T and T ¼ 0.3 K. Red lines and blue lines identify FQHE states belong to the two-flux
and four-flux composite fermion sequences, respectively.
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Coulomb energy units, where we use ϵ ¼ 6.6 for BN-
encapsulated graphene [15]. We note that this result is
remarkably close to the theoretical value of 0.1 e2=ϵlB
calculated by exact diagonalization [30] without including
any additional corrections [44] (see SM for detailed
comparison [29]).
Figure 3(c) shows the B dependence of the ν ¼ 2=5 gap.

In this case the gap follows a
ffiffiffiffi

B
p

dependence over the
entire accessible field range, projecting to ∼ − 10 K at
B ¼ 0. The disorder broadening is consistent with meas-
urement of the 1=3 gap and SdH analysis. The square-root
dependence is qualitatively consistent with same CF picture
as above in which the ν ¼ 2=5 represents a cyclotron gap of

CF LLs. However, the lack of a transition is surprising (we
would expect the CF cyclotron gap to show evidence of the
same CF LL crossing that gives rise to the kink in the 1=3
gap; see SM [29]), and may suggest that the exchange
interaction for CFs is highly sensitive to composite fermion
filling fraction [15].
Figure 4 plots bulk conductance measured at higher

Landau levels. In the N ¼ 2 LL, we observed features
corresponding to four-flux CF ground states at ν ¼ 6þ 1

5

and 6þ 4
5
and electron solid states at ν ¼ 6þ 1

3
and 6þ 2

3
.

The electron solid state is characterized by the nonmono-
tonic temperature dependence in the bulk conductance, with
a peak at the melting transition Tc which diminishes to zero
at low temperature [5,7,21]. In the N ¼ 3 LL, bulk con-
ductance displays a broad minimum around ν ¼ 10þ 1

4
and

10þ 3
4
, as shown in Fig. 4(b), where the temperature

evolution resembles the bubble phase of N ¼ 3 LL observed
in GaAs Corbino samples [23]. The deep conductance
minima observed in the Corbino geometry and the temper-
ature dependence reminiscent of a melting transition are both
indicative of a robust electron solid state, which is qualita-
tively similar to recent measurement in monolayer graphene
samples with a Hall bar geometry [21,22]. Interestingly, the
bulk conductance reveals no obvious feature at half filling
down to T ¼ 0.3 K at B ¼ 25 T (see SM [29]), which is in
contrast to the even-denominator state recently reported in
monolayer graphene samples with Hall bar geometry [22].
Given the high resolution and large energy gap of correlated
states observed in Corbino geometry, a potential electron
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liquid phase such as the Pfaffian is expected to show up as a
sharp minimum in bulk conductance.
In summary, we have established a process of realizing

very high-quality Corbino devices in a dual-gated geometry.
The ability to directly probe bulk conductance in the QHE
regime, independently of the edge states, provides new
access to various electron liquid and solid states in graphene
beyond what has previously been possible in transport
studies. Additionally, the superior quality compared to
similarly constructed Hall bar devices suggests that transport
measurement in the conventional Hall geometry is limited by
difficulties related to probing the edge channels but not bulk
disorder. This might be due to details of the edge mode
structure [38] or difficulties in designing contacts that well
equilibrate to the edge channels [35].
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