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A key difficulty to understanding friction is that many physical mechanisms contribute simultaneously.
Here we investigate third-body frictional dynamics in a model experimental system that eliminates first-
body interaction, wear, and fracture, and concentrates on the elastic interaction between sliding blocks
and third bodies. We simultaneously visualize the particle motion and measure the global shear force.
By systematically increasing the number of foreign particles, we find that the frictional dissipation depends
only on the size ratio between surface asperities and the loose particles, irrespective of the particle’s size or
the surface’s roughness. When the particles are comparable in size to the surface features, friction increases
linearly with the number of particles. For particles smaller than the surface features, friction grows
sublinearly with the number of particles. Our findings suggest that matching the size of surface features to
the size of potential contaminants may be a good strategy for reliable lubrication.
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Introduction.—The dynamical resistance of two contact-
ing bodies to relative motion, or friction, is commonly
considered [1–7] to depend on their material properties.
For practical purposes, two nominally flat sliding solids are
usually considered, and friction is characterized by a single
parameter: the coefficient of friction [8]. Today, it is
accepted that friction is a dynamic process [9,10] and that
the friction coefficient may depend on many factors, such
as loading geometry [11–13], sliding rate [5,14,15], and
sliding history [16–20]. However, these effects typically
modify friction relative to its material-determined base
state. More remarkable is the impact of third bodies, or
phases, frequently found to infect sliding interfaces
(whether purposefully or not), which can completely alter
the frictional dynamics [21–24]. Materials rubbed repeti-
tively wear when films or loose particles get trapped within
the interface and agglomerate into load-carrying third
bodies. In a tribological system, a fluid body (or phase)
introduced into the interface can alter the dynamics
[25–31]. Third bodies, gouge, and wear play an especially
critical role in geological physics as the frictional dynamics
between rocks of disparate scales, from granular media to
tectonic plates [32], are affected by gouge-filled damage
zones of various granular phases that often dominate the
sliding dynamics and stability of shear zones and tectonic
faults [33–39]. Indeed, granular flow and deformation of
granular systems at high densities have been studied
extensively, revealing a complex rheological response
under shear [40–42] and robust constitutive laws for
granular flow [43–45]. In sliding systems with a small
number of third-body particles, experimental and numerical
studies have produced a wealth of empirical knowledge

[46–50]. Experimentally, however, it is difficult to isolate
the role of third-body friction from other effects, such
as wear.
In this work, we experimentally isolate the effect of

third-body particles on macroscopic solid friction. We
perform a systematic study of the frictional resistance
between two rough surfaces as discrete particles are
introduced into the interface. We focus on the effects of
the particles by keeping the sliding surfaces at a fixed
gap—not a fixed perpendicular load. We show that even
one particle can qualitatively alter the sliding dynamics. As
expected, frictional dissipation increases as more particles
are added to the interface. However, the rate of increase of
the dissipation depends on the ratio between the size of the
particles and the typical feature size of the interface; if the
size ratio is one or larger, frictional force grows linearly
with particle number. If the size ratio is less than one, the
increase in frictional force with particle number N grows as
Nβ, where β < 1.
Results.—The major challenge in studying third-body-

induced friction is to isolate the third-body friction effects.
To this end, we developed an experimental system that
probes the role of small, third-body particulates in sliding
friction while suppressing other effects, as shown in
Fig. 1(a). Our sliding surfaces are composed of two ring-
shaped samples cast out of polydimethylsiloxane (PDMS).
The rings are 3.5 mm wide with an outer diameter of
22 mm. The molds are 3D printed and designed to have two
qualitatively different surface patterns: (i) disordered with
randomly distributed single-cosine-shaped asperities, and
(ii) ordered with a two-dimensional grid of perpendicular
sinusoids. We cast the samples out of the molds shown in
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Fig. 1(b). We define roughness of all surfaces to be the
characteristic asperity size Lf; each asperity has the shape
of a cosine bump with an aspect ratio of width to height
of 2. In this study, we used patterns with Lf ranging from
250–625 μm. The particles used are made of polyethylene
and are much harder than the PDMS rings. (See the
Supplemental Material [51] for details.)
Two elastic PDMS rings with identical surface patterns

are coupled to the bottom and top plates of a commercial
rheometer (see the Supplemental Material [51]), a device
used to measure how liquids or liquid-solid mixtures
respond to applied forces. The two rubber rings sit parallel
and concentric to one another with their rough sides facing
each other at a vertical gap that allows them to freely rotate
without contact. However, the rough surfaces are close
enough that the minimum vertical distance between the two
surfaces over an entire rotation is less than 10 μm. For our
experiments, the minimum intersurface distance varies by
5� 2.5 μm. (Details on how we achieved the small gap are
included in the Supplemental Material [51].) At the
beginning of every experiment, we check that the system

shows no measurable shear force after the gap is filled with
low viscosity silicone oil, as shown for N ¼ 0 in Fig. 1(c).
The space between the rough surfaces is filled with

silicone oil matching the refractive index of the PDMS
rings but not that of the polyethylene particles. This allows
us to simultaneously visualize the interfacial particle
dynamics while measuring the global shear force. Silicone
oil has a 3% lower density than the polyethylene particles
[Fig. 1(b)]; thus, the particles preferentially sink into the
valleys of the bottom surface. However, the density differ-
ence is low enough for low-velocity flows to lift and carry the
particles up and around, resulting in stochastic dynamics.
The top plate is rotated at a set rate while the torque (shear
force) is measured as a function of the rotation angle (which,
for constant rotational velocity, is proportional to time). The
load is also measured. Particles are introduced incrementally
into the interface at increasing numbers, N. Several particles
diameters, Db, were tested, ranging from 98–550 μm.
The characteristic size ratio of the system is defined as
Δ ¼ Db=Lf. A constant rotation speed of 0.01 rad=s was
used in all tests. This relatively slow rate reduces the viscous
forces induced by the shearing of the silicone oil, thus
allowing resolution of smaller discrete frictional force peaks
generated through the disturbance caused by a single particle.
The particle-free interface purposefully exhibits excep-

tionally low resistance. Indeed, when the interface is filled
only with silicone oil (N ¼ 0), the shear force measured
by the rheometer never exceeds 0.04 mN. However, the
addition of even a single particle (N ¼ 1) dramatically
modifies the sliding dynamics. The total frictional dissi-
pation increases, and discrete random shear force peaks as
high as several mN appear. The frequency and amplitude of
the force peaks consistently grow as more particles are
added into the interface, as seen in Figs. 1(c) and 1(d). The
temporal fluctuations of the dissipation force are more
intense for large particles (Δ ¼ 1.45) than for smaller ones
(Δ ¼ 0.5) but are qualitatively similar for ordered and
disordered surfaces. In general, the magnitude of the fric-
tional force peaks is higher for larger Δ. This trend is
consistent for all systems within the tested range. The
emerging frictional resistance is directly attributable to
third-body interactions since there is no measurable friction
in a particle-free interface.
We quantify the frictional behavior of this system by

extracting the shear force time-series (from the measured
torque) for different N, number of particles and Δ, particle-
to-asperity ratios. We calculate the average shear force,
fave, by integrating the shear force time-series for a number
of full rotations of the top plate and dividing by the
corresponding duration. (Further details are included in
the Supplemental Material [51].) This provides a quanti-
tative measure of the system’s frictional resistance.
The average frictional dissipation force, fave, increases

monotonically with the number of particles and its magni-
tude strongly depends on the ratio of particle diameters
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FIG. 1. Experimental setup and raw data. (a) Schematic of
experimental setup. (b) The PDMS rings with disordered (left)
and ordered (right) surfaces with cosine asperities, as well as two
sizes of polyethylene particles. (c) Shear force time series for
Δ ¼ 1.45 and (d) for Δ ¼ 0.5 on disordered surfaces. The initial
force times series (N ¼ 0) contain oil and no particles. The
number of added particles increases downward within each panel.
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and surface features [Fig. 2(a) and inset]. However, the
slopes of the fave ∼ N curves depend only on Δ, as shown
in Fig. 2(a). Specifically, for Δ ≥ 1, the frictional force
grows linearly with the number of trapped particles while
for Δ ≤ 1, fave scales as Nβ where β ≤ 1 [Fig. 2(b)].
Interestingly, β does not depend on the surface pattern for a
given Δ; it is the same for both ordered and disordered
surfaces.
We image the interfacial dynamics while measuring the

torque by affixing a 45° mirror between the bottom ring and
the fixed plate of the rheometer, as shown in Figs. 1(a)
and 3(a). Each friction event, which is reflected in the

shear force signal as a force spike, is correlated with an
abrupt particle displacement at the interface. We analyze
the trajectories for each particle and compare them to the
force time series. An interfacial image and the trajectory of
a single particle over more than one full rotation is shown in
Fig. 3(b). Particle velocities in the radial and azimuthal
directions for a single particle experiment are plotted in
Fig. 3(c). We note that most force spikes correspond to a
sudden particle velocity change in the radial or azimuthal
direction. We quantify the force-velocity spikes correlation
using the phase difference expð−jtvpeak − tfpeakjÞ where
tvpeak and tfpeak are the times of occurrence of nearby
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FIG. 2. Frictional resistance depends only on Δ and N. (a) The
average shear force fave normalized by its single particle (N ¼ 1)
value as a function of the number of particles, N, for different
Δ ¼ Db=Lf. The inset shows the same data without normaliza-
tion. The scaling fave ∼ Nβ is robust even though the proportion-
ality factor may not be. The error bars represent the variation of
particle size according to the manufacturer. (b) β as a function of
Δ. (β ∼ 0.15 for Δ ¼ 0.26, β ∼ 0.5 for Δ ¼ 0.5, β ∼ 1.0 for
Δ ¼ 1.45). (inset) The marker symbols reveal the particle
diameters Db and asperity sizes Lf we used for the Δ’s.
Open (filled) symbols represent ordered (disordered) surfaces,
respectively.
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FIG. 3. Friction spikes correlate highly with discontinuities in
the motion of third-body particles. (a) Three snapshots showing
particles trapped between the two PDMS rings (N ¼ 1, 10, 50
particles of size Db ¼ 550 μm on a disordered ring surface with
Lf ¼ 500 μm). (b) Composite image of a single-particle experi-
ment showing the particle’s entire trajectory. The dashed lines
indicate where the force discontinuities occur. (c) Radial velocity
(top), shear force (middle), and the angular velocity (bottom) of a
single particle as a function of time. The dashed lines show where
discontinuities of velocity and force occur. (d),(e) The success
pairing rate of the cross-correlation of velocity spikes with shear
force spikes as indicated by vertical blue lines is 0.8571 for
single-particle experiments and 0.8475 for a 10-particle experi-
ment. These success pairing rates are more than 3-sigma away
from the Gaussian correlation (red curves) exhibited by synthetic
data (stars). (f),(g) Cross-correlation matrix of velocity and shear
force spikes for six single particle runs and for one 10-particle
run.
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velocity and force spikes, respectively. The correlation rate
is the ratio of the number of correlated pairs of friction
and velocity spikes for several single-particle experiments
[shown as colored blocks on the diagonal of Fig. 3(f)] over
the total number of spikes. We compare our findings to the
correlation of a random synthetic velocity time series
containing the same number of spikes and the force signals
of the corresponding time series. A success rate for 1000
null-hypothesis velocity profiles compared with the force
time series follows a Gaussian distribution, as shown by the
red curve in Fig. 3(d). The success rate for our single
particle experiment, shown as the blue line in Fig. 3(d), is
beyond a 3-sigma tolerance compared to the random
artificial data. This indicates that the correlation between
friction events and discontinuities in particle motion is
significant for single-particle-induced friction. We extend
this analysis to multiparticle friction by comparing the
force signal with the trajectories of individual particles.
The success pairing rate and phase difference shown in
Figs. 3(e) and 3(g) further demonstrates the correlation
between friction and particle motion for multiparticle
experiments.
Discussion.—The top surface rotates at a constant rate,

but the motion of the particles is intermittent, as shown in
Fig. 3(c). This indicates that in addition to flowing along
with the fluid (when Δ < 1) or rolling between the surfaces
(whenΔ > 1) particles occasionally jam between asperities
of the two opposing surfaces. When a particle is trapped
and released, it undergoes an abrupt velocity change in
magnitude and/or direction. The discontinuous particle
motion, induced by particle jamming and unjamming
between asperities, highlights that the frictional force peaks
appear when particles pin the interface during the shearing
process and that, in our system, frictional dynamics are
dominated by third-body interactions.
For Δ ≥ 1, many particles move erratically and change

motion in a strongly inhomogeneous manner. For Δ < 1,
most particles have smoother trajectories with only a few
particles showing sudden slope changes, as seen in two
typical examples given in Figs. 4(a) and 4(b) and in
Supplemental movies S1 and S2 [51]. Statistically, particles
are generally slow moving and only occasionally experi-
ence higher speeds, as shown in the two examples of
instantaneous velocity distributions in Figs. 4(c) and 4(d).
The polyethylene third-body particles in our experiment are
heavier than the silicone oil they are immersed in, and they
settle to the stationary bottom surface. If both surfaces were
completely flat, the steady rotation of the top plate would
result in a spherical particle rolling on the bottom surface
at a steady velocity dependent on its size, as indicated by
the upward blue and red arrows in Fig. 4(e). The roughness
of the surfaces distorts the shear flow, which advects in a
tortuous path through a maze formed by the asperities. As a
result, in our tests most particles move much slower than
they would if the surfaces were flat.

Occasionally, a particle may lift off the bottom plate
and interact directly with the top rotating plate, or both
plates, achieving significantly higher instantaneous speeds,
indicated by the enhanced high-velocity tail of the distri-
butions in Fig. 4(e). Individual particles may momentarily
exceed the rotational speed of the top plate, indicated with a
downward black arrow in Fig. 4(e). However, the average
velocity does not depend significantly on the number of
particles, as shown in inset to Fig. 4(e).
For smaller values of Δ, particles can hide better in the

bottom surface’s roughness and avoid getting pinned by
opposing asperities, giving rise to a less erratic behavior
both in their forces and their speeds. The bigger the
particles are, the more often and more strongly they will
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FIG. 4. Third-body particles’ velocities statistics. (a),(b) Trajec-
tories of individual particles unfolded in azimuthal angle θðtÞ vs
time for Δ ¼ 0.55 < 1 with N ¼ 30 particles (left) and Δ ¼
1.1 ≥ 1 with N ¼ 10 particles (right). We colored with red and
green the trajectory of the particle that traveled the least and most
distance out of all the particles that we successfully tracked in the
entirety of the experiment. (c),(d) The respective distributions of
instantaneous velocities of (a),(b). The thick line is the total
distribution of all the particles instantaneous velocities. (e) The
total particle instantaneous velocity distributions for N ¼ 1, 30,
100 with Δ ¼ 0.55 and N ¼ 1, 10, 50 with Δ ¼ 1.1. (inset) The
average particle speed as a function of particle number N. The
black downward arrow indicates the imposed rotational speed of
the top plate; the blue and red upward arrow indicates the
expected fluid speed at the center of a small (Δ ¼ 0.55) or large
(Δ ¼ 1.1) particle for a linear laminar profile from the stationary
bottom plate to the top steady moving plate (assuming no
roughness present).
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pin the two surfaces together and generate a force spike.
TheΔ-dependent scaling of frictional dissipation force with
N and the presumably related Δ dependence of the velocity
statistics remain open questions that may be resolved in the
future by considering the way the particles interact with
asperities and with each other.
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