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An unambiguous crystallographic structure solution for the observed phases II-VI of high pressure
hydrogen does not exist due to the failure of standard structural probes at extreme pressure. In this work we
propose that nuclear magnetic resonance spectroscopy provides a complementary structural probe for high
pressure hydrogen. We show that the best structural models available for phases II, III, and IV of high
pressure hydrogen exhibit markedly distinct nuclear magnetic resonance spectra which could therefore be
used to discriminate amongst them. As an example, we demonstrate how nuclear magnetic resonance
spectroscopy could be used to establish whether phase III exhibits polymorphism. Our calculations also
reveal a strong renormalization of the nuclear magnetic resonance response in hydrogen arising from
quantum fluctuations, as well as a strong isotope effect. As the experimental techniques develop, nuclear
magnetic resonance spectroscopy can be expected to become a useful complementary structural probe in

high pressure experiments.
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Hydrogen has a central place in high pressure research
[1] due to its abundance in astrophysical bodies [2] and
its potential to exhibit exotic properties such as phonon-
mediated high temperature superconductivity [3]. How-
ever, even the basic question of what are the crystal
structures of the observed high pressure hydrogen phases
remains elusive, largely due to the challenges faced by
standard structure determination techniques under the
extreme pressures reached in diamond anvil cells.

The lack of core electrons in hydrogen implies that x rays
scatter from electrons located in molecular orbitals and
cannot provide information about the individual positions
of protons. Nonetheless, it has been possible to perform
x-ray experiments up to pressures of 190 GPa to establish
that the hydrogen molecules are arranged in a hexagonal
closed packed lattice up to those pressures [4,5].

Protons and deuterons have significant neutron scatter-
ing cross sections, which might suggest that neutron
diffraction would be an ideal probe for structural studies
of high pressure hydrogen. However, the weakness of
available neutron sources combined with the small samples
in diamond anvil cells place practical limits to the appli-
cability of this technique [6], and the highest pressure
experiments reported in the hydrogen-deuterium system
only reach 38 GPa [7].

The most widely used structural probes of high pressure
hydrogen are infrared (IR) and Raman spectroscopies.
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Although these techniques have been extremely successful
at identifying structural phase transitions in high pressure
hydrogen [8—11], they only partially probe the lattice
dynamics of phonons with vanishing wave vectors, and
as a consequence are insufficient to determine the crystal
structures of the underlying phases.

The difficulties faced by standard structure determi-
nation techniques in the case of high pressure hydrogen
suggest that alternative methods could provide valuable
complementary information. Nuclear magnetic resonance
(NMR) spectroscopy probes the electronic response to
applied magnetic fields, e.g., via the chemical shielding
tensor ¢ in insulators, which relates the induced magnetic
field B;, = —6B, at an atomic site to an applied external
field B,. The chemical shielding tensor strongly depends
on the local electronic configuration, and as a consequence
encodes information about the local structure. This has led
to the growing field of NMR crystallography, in which
modeling and experiment are combined to solve crystal
structures [12].

There has been long-term interest in combining NMR
spectroscopy with diamond anvil cell high pressure experi-
ments, and reports include studies of ortho-para hydrogen
conversion up to 12.8 GPa [13] and proton diffusion up to
6.8 GPa [14]. Experiments are challenging due to a variety
of factors, including weak signals, low resonator sensitiv-
ities, and poor access to the samples in the anvil cells,
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which have traditionally limited high pressure NMR
spectroscopy experiments to a maximum of a few tens
of GPa [15]. This situation has recently changed with the
ground-breaking developments of Meier and co-workers,
who exploiting magnetic flux tailoring Lenz lenses to
amplify the magnetic field at the sample have measured
hydrogen NMR spectra of paraffin up to 72 GPa [16] and of
FeH up to 200 GPa [17]. The state of the art of high
pressure NMR spectroscopy has recently been reviewed in
Refs. [15,18]. These recent developments pave the path
towards NMR spectroscopy experiments in the pressure
range relevant for high pressure hydrogen phases II-VI.
Phase II of hydrogen first appears at pressures in the range
73-110 GPa [19-21], and that of deuterium at even lower
pressures of about 25 GPa [22]. Phase III appears in the
pressure range 150-170 GPa [23], and phase IV in the
pressure range 200-220 GPa [24]. These are all within
reach of the latest high pressure NMR spectroscopy
experiments.

In this work we study the potential of NMR spectroscopy
to probe the structure of high pressure hydrogen phases. In
particular, we show that NMR chemical shieldings are
markedly distinct between the various theoretical structural
models proposed for hydrogen insulating phases II, III, and
IV, and could therefore be used to assign the appropriate
structure to these phases. We also expect that NMR
spectroscopy could play a major role in other high pressure
systems, including the hydrides which have recently been
shown to exhibit some of the exotic properties initially
proposed for pure hydrogen [25-27], and also compounds
containing heavier elements that are present in the interiors
of gas and rocky planets.

We consider six hydrogen structures. The P2, ¢ [28] and
P6;m [28] structures are candidates for phase II, which
exists at low temperatures and at pressures up to around
150 GPa. The C2/c [28] and P6,22 [29] structures are
candidates for phase III, which exists in a wide pressure
range above about 150 GPa. The Pc [30] and Pca2; [31]
structures are candidates for phases IV and V, which appear
around room temperature and at pressures higher than
220 GPa. All these structures have low enthalpies and
Gibbs free energies [32-34], rendering them realistic
candidates for the experimentally observed phases.
Furthermore, several of their structural [29] and spectro-
scopic [35-38] features are consistent with corresponding
experimental observations, although there are some out-
standing discrepancies, particularly regarding the nature of
their band gaps [39-41]. Available experimental and
theoretical data are insufficient to unambiguously identify
the correct structure associated with the observed exper-
imental phases: for example both C2/c¢ and P6,22 struc-
tures exhibit IR and Raman spectra consistent with phase
III, and the Pc and Pca?2, structures consistent with phase
IV, while their relative enthalpies are very similar.

To explore the possibility that NMR spectroscopy might
provide complementary structural information, we have
performed first principles density functional theory (DFT)
calculations using the CASTEP package [42]. We have
optimized the volumes and internal coordinates of the six
structures by minimizing their enthalpies at pressures in the
range 150-250 GPa, and using five different approaches,
namely, the local density approximation (LDA) [43,44],
the Perdew-Burke-Ernzerhof (PBE) approximation [45], the
Becke-Lee-Yang-Parr (BLYP) approximation [46], the PBE
approximation with the Tkatchenko-Scheffler van der Waals
correction (PBE + TS) [47], and the hybrid Heyd-Scuseria-
Ernzerhof (HSE) approximation [48,49], to describe the
exchange-correlation functional. We have then calculated
the chemical shielding tensor using the gauge-including
projector augmented waves (GIPAW) theory [50-52] as
implemented in CASTEP.

The main result of our work is presented in Fig. 1,
showing the isotropic chemical shieldings 1 Tr(e) of the six
considered structures calculated using the PBE functional.
We also show the corresponding maximum and minimum
absolute shielding anisotropies o5y = |33 — % (611 + 622)]
in Table I. Isotropic line shapes could be obtained exper-
imentally using magic angle spinning (MAS) [53], but we
note that the precise parameters measured depend on the
type of experiment performed, and we also provide magres
files containing the full chemical shielding tensors with the
Supplemental Material [54] to serve as the basis for further
processing for direct comparison with future experiments.

Comparing the NMR spectra of the phase II candidate
structures at 150 GPa in Fig. 1, we observe that the P2,c
structure exhibits two closely spaced peaks centered around
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FIG. 1. Isotropic chemical shieldings calculated using the PBE
functional at 150 GPa for the P2,c, P63m, C2/c, and P6,22
structures, and at 250 GPa for the Pc and Pca?2, structures. The
vertical lines show the precise location of the calculated shield-
ings, while the wider spectra are the result of a convolution with a
Gaussian function of 0.1 ppm width.
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TABLE 1. Shielding anisotropies calculated using the PBE
functional at 150 GPa for the P2,c¢, P63m, C2/c, and P6,22
structures, and at 250 GPa for the Pc and Pca2; structures.

Shielding anisotropy (ppm)

Structure Maximum value Minimum value
P2,c 7.78 3.87
P63m 9.22 4.05
C2/c 4.50 1.86
P6,22 4.49 1.50
Pc 6.56 2.93
Pca2, 6.18 0.56

16 ppm, and a separate narrower peak at around 17 ppm.
There are six distinct atomic sites (each with four atoms) in
the P2,c structure, but five of these give similar chemical
shieldings and result in the broad double peak, while the
sixth site gives the lone peak at 17 ppm. By contrast, the
P6s;m structure only exhibits two closely spaced peaks
centered at 16 ppm, which are formed by three distinct
chemical shieldings arising from the three independent
atomic sites (two of these with six atoms each, and one with
four atoms) in this structure. Analogous calculations using
the LDA and BLYP functionals (see Supplemental Material
[54]) consistently show a significantly broader spectrum for
the P2, c structure compared with the P6;m structure. The
different range and number of peaks between the two
structures indicate that NMR spectroscopy could provide a
promising tool to solve the structure of hydrogen phase II.
It could also shed light on the potential polymorphism in
phase II of deuterium [21,56].

Comparing the NMR spectra of the phase Il candidate
structures at 150 GPa in Fig. 1, we observe that the C2/c
structure exhibits two peaks centered at 16.70 ppm and
17.35 ppm, which is a markedly different spectrum to that
of the P6,22 structure with three peaks at 16.40, 17.10, and
17.70 ppm. There are six distinct atomic sites (each with
four atoms) in the C2/ ¢ structure, which lead to six distinct
chemical shieldings, but these cluster into two groups of
three yielding the two observed peaks at the 0.1 ppm
resolution. There are also six distinct sites (each with six
atoms) in the P6,22 structure, yielding four distinct
chemical shieldings (two pairs of sites yield the same
shielding), two of which are similar and lead to the central
peak, and the other two lead to peaks at the highest and
lowest shieldings. We note that the peak at the lowest
shielding has greater intensity than that at the highest
shielding because the former arises from 12 atomic sites,
while the latter from six. This clear difference between the
NMR spectra of the C2/¢ and P6,22 structures could prove
critical in understanding the properties of phase III.
Theoretically, the P6,22 structure has lower Gibbs free
energy at temperatures in the range 0-300K and at
pressures below 200 GPa and the C2/c¢ structure above

that pressure, suggesting the possibility of polymorphism
in phase III [29]. However, available experimental data are
insufficient to confirm or reject this hypothesis, because
both structures exhibit essentially indistinguishable IR and
Raman spectra, consistent with experiment, and x-ray
diffraction data are only available below 200 GPa [4,5],
suggesting a hexagonal structure consistent with P6,22.
The distinct NMR spectra exhibited by these two structures
could unambiguously resolve the question of polymor-
phism in phase III. We note that the two-peak spectrum of
the C2/c structure and the three-peak spectrum of the
P6,22 structure is maintained if the calculations are
performed using the LDA, PBE + TS, or HSE functionals,
while the peaks move closer together when using the BLYP
functional, but the latter describes the hydrogen bond more
poorly (see Supplemental Material [54]).

Comparing the NMR spectra of the phase IV and V
candidate structures at 250 GPa in Fig. 1, we observe that
the Pc structure exhibits a broad double peak between 6.00
and 7.75 ppm and a narrower double peak between 8.50
and 9.50 ppm. There are 24 distinct atomic sites (each with
two atoms) in the Pc structure, and each leads to a different
value for the chemical shielding which results in the broad
peaks observed in Fig. 1. The NMR spectra of the Pca2;
structure exhibits a continuum of peaks spanning the range
from 5.00 to 7.75 ppm. These peaks arise from 12 distinct
atomic sites (each with four atoms), a smaller number
compared to the Pc structure. The only available exper-
imental information on phases IV and V is based on their
Raman and IR spectra [8,9], which are largely consistent
with those of both Pc and Pca?2, structures [31,35]. Again,
our results show that NMR spectroscopy could provide
further evidence to disentangle the underlying structure of
these phases of hydrogen. We note that using the LDA
functional leads to a similar picture to that shown in Fig. 1,
in which the Pc NMR spectrum spans a wider range of
chemical shieldings than the spectrum of the Pca2,
structure. The comparison using the BLYP functional is
not possible because the Pca2; structure exhibits metallic
behavior in that case (see Supplemental Material [54]).

We have repeated the chemical shielding tensor calcu-
lations of the phase III candidate C2/c¢ and P6,22
structures as a function of pressure in the range 150 to
250 GPa, and the results are depicted in Fig. 2. There is a
relatively strong shift of the NMR peak positions as a
function of pressure from around 17 ppm at 150 GPa to
about 3 ppm at 250 GPa. Nonetheless, the relative shield-
ings of the spectra depicted in Fig. 1 for 150 GPa are
maintained at all the considered pressures, suggesting that
experiments at any pressure in which phase III is observed
should be sufficient to fully explore the relation between
the NMR spectra and the underlying structures. We also
remark that NMR spectroscopy experiments do not mea-
sure absolute shieldings, but instead relative shifts with
respect to some reference structure, and therefore the
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FIG. 2. TIsotropic chemical shieldings of the C2/c and P6,22

structures calculated using the PBE functional as a function of
pressure.

relevant quantity in our predictions is the relative position
of the peaks, not their absolute value.

All calculations reported so far have been performed at
the static lattice level of theory. However, hydrogen is the
lightest atom and quantum zero point motion is known to
strongly renormalize its energetic [33], structural [57],
optical [39,41], and vibrational [35,37] properties. We
have therefore performed chemical shielding tensor calcu-
lations for the C2/c¢ and P6;22 structures including the
effects of quantum zero-point motion. The initial step is the
calculation of the lattice dynamics at the harmonic level of
theory, which we have performed using DFT as imple-
mented in the CASTEP package, and using the finite
displacement method in conjunction with nondiagonal
supercells [58]. Anharmonic lattice dynamics contributions
are known to be very important for calculating the relative
energy of different hydrogen structures, but this is mostly
due to the small energy differences between structures
rather than a significant anharmonic energy, which is only
about 5% of the harmonic energy [33]. We have therefore
neglected anharmonic terms in our lattice dynamics
calculations.

We then calculate the zero point quantum renormaliza-
tion of the chemical shielding tensor using the stochastic
approach described in Refs. [59-61], and accelerating the
sampling by exploiting thermal lines [62,63]. The isotropic
chemical shieldings of the C2/c¢ and P6,22 structures
calculated with the inclusion of quantum zero-point motion
are depicted in Fig. 3. Zero-point motion leads to a strong
renormalization of the peak positions of about 7 ppm,
confirming that quantum fluctuations are strong in hydro-
gen. However, the number and relative position of the peaks
in the spectra of the two structures remain similar to that of
the static lattice results. This suggests that, although
quantum zero point motion strongly renormalizes the
electronic response to magnetic fields in hydrogen, the
results depicted in Fig. 1 showing the differences in
the NMR spectra between different high pressure hydrogen
candidate structures remain valid.

Figure 3 also shows the quantum zero-point renormal-
ization of the chemical shielding corresponding to the
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FIG. 3. [Isotropic chemical shieldings of C2/c¢ and P6,22

calculated using the PBE functional at 150 GPa. The dotted
line distributions show the static lattice results, and the dashed
and solid line distributions show the results including quantum
zero-point (ZP) motion for deuterium and hydrogen, respectively.
The results have been convoluted with a Gaussian function of
0.1 ppm width.

deuterium isotope. As a consequence of the large mass
difference between hydrogen and deuterium, the zero-
temperature chemical shieldings exhibit a strong isotope
effect. This suggests that NMR spectroscopy could also be
used to explore the isotopic composition of high pressure
hydrogen phases. In addition, we note that the deuterium
nucleus is quadrupolar and it will therefore be subject to an
electric field gradient (relevant parameters listed in the
Supplemental Material [54]). This implies that in experi-
ments without MAS, the spectral lines will be broadened by
the quadrupolar interaction in deuterium.

Our results indicate that NMR spectroscopy is a prom-
ising technique for elucidating the structures of the
observed phases of high pressure hydrogen. Direct obser-
vation of the calculated isotropic chemical shieldings
would require MAS of a proton sample in a diamond anvil
cell. Although MAS has been successfully combined with
diamond anvil cells, the large rotor speeds needed for
proton signals might pose technical challenges due to the
small size rotors required. Alternatively, MAS experiments
on deuterium samples with residual protons would allow
slower spinning and thus larger rotors, simplifying experi-
ments. We note that good sensitivities are obtained in
samples with proton concentrations as low as 1% [64].
Finally, the technically simpler experiments would be
static, but in those the presence of anisotropies implies
that measurements should exploit differences in proton
chemical shielding anisotropies or deuterium quadrupolar
couplings rather than isotropic chemical shieldings. Magres
files containing the full chemical shielding tensors are
published with the Supplemental Material [54].

In conclusion, we propose that nuclear magnetic reso-
nance could become a valuable probe to identify the
underlying structures of the observed high pressure phases
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of solid hydrogen. We have shown that isotropic NMR
spectra would be particularly useful as the chemical
shieldings are markedly different between the different
structural models available for hydrogen phases II, III, and
IV and V. For example, they could be used to resolve
questions such as the potential polymorphism of phase III
or the precise structural sequence in phases IV and V. Our
results pave the path for the use of NMR spectroscopy in
structure determination in other high pressure systems, both
for hydrogen-rich compounds or for other compounds
containing heavier atoms.
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