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Magnetic energy (ME) and kinetic energy (KE) in ideal incompressible magnetohydrodynamics are not
global invariants and, therefore, it has been justified to discuss only the cascade of their sum total energy.
We provide a physical argument based on scale locality, along with compelling evidence that ME and KE
budgets statistically decouple beyond a transitional “conversion” range. This arises because magnetic field-
line stretching is a large-scale process which vanishes on average at intermediate and small scales within
the inertial-inductive range, thereby allowing each of the mean ME and KE to cascade conservatively and at
an equal rate, yielding a turbulent magnetic Prandtl number of unity over these scales.
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Magnetohydrodynamic (MHD) turbulence is of funda-
mental importance to many fields of science, including
astrophysics, solar physics, space weather, and nuclear
fusion. The Reynolds numbers of such flows are typically
very large, giving rise to plasma fluctuations with power-
law spectra over a vast range of scales where both viscosity
and resistivity are negligible. We call such a range “inertial
inductive” since ideal dynamics dominate. There are
several competing theories for the spectrum of strong
MHD turbulence over the inertial-inductive range [1–5],
all of which assume scale locality of the energy cascade,
which has been shown to hold [6].
In a scale-local cascade, energy transfer across scale l is

predominantly due to scales within a moderate multiple of
l [7]. This gives rise to an inertial-inductive scale range
over which the flow evolves without direct communication
with the largest or smallest scales in the system.
In MHD turbulence, only the sum of magnetic and

kinetic energy (ME and KE, respectively), i.e., total energy,
is a global invariant of the inviscid unforced dynamics.
Therefore, it has been justified to discuss only the cascade
of total energy but not of KE or ME separately, which are
coupled by magnetic field-line stretching. In principle,
the process of magnetic field-line stretching can operate
at all scales, giving rise to various phenomena such as
Alfvén waves.
We shall show here that magnetic field-line stretching is a

large-scale process, which operates over a “conversion
range” of scales of limited extent and vanishes on average
at intermediate and small scales in the inertial-inductive range
[8]. Over the ensuing part of the inertial-inductive range,
meanKE andME cascade conservatively and at an equal rate
to smaller scales despite not being separate invariants.

Our findings are important in subgrid scale modeling of
systems such as accretion disks, whose evolution is con-
trolled by magnetic flux through the disk [9–11]. The
strength of the magnetic field is determined by a balance
between (i) turbulent advection (or turbulent viscosity)
which accretes the field radially inward and (ii) turbulent
resistivity which diffuses it outward [12–15]. Other appli-
cations are outlined in the conclusion.
We start from the incompressible MHD equations with a

constant density ρ:

∂tuþ ðu · ∇Þu ¼ −∇pþ J ×Bþ ν∇2uþ f; ð1Þ

∂tB ¼ ∇ × ðu × BÞ þ η∇2B: ð2Þ

Here, u is the velocity, and B is the magnetic field
normalized by

ffiffiffiffiffiffiffiffi
4πρ

p
to have Alfvén (velocity) units.

Both fields are solenoidal: ∇ · u ¼ ∇ ·B ¼ 0. The pressure
is p, J ¼ ∇ ×B is the (normalized) current density, f is
external forcing, ν is viscosity, and η is resistivity.
In a statistically steady state, the space-averaged KE and

ME budgets are, respectively,

hSijBiBji ¼ ϵinj − νhj∇uj2i; ð3Þ

hSijBiBji ¼ ηhj∇Bj2i; ð4Þ

where h…i is a spatial average, Sij ¼ ð∂jui þ ∂iujÞ=2 is
the strain rate tensor, and ϵinj ¼ hf · ui is the kinetic energy
injection rate. It is clear from Eqs. (3) and (4) that mean
KE-to-ME conversion due to magnetic field-line stretching
is positive and bounded: 0 ≤ hB · S · Bi ≤ ϵinj. The bound
holds in the presence of an arbitrarily strong uniform
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magnetic field B0 indicating significant cancellations. This
can be understood by considering that in a turbulent flow,
the strain S being a derivative is dominated by the small
scales, whereas B is dominated by the large scales near the
magnetic spectrum’s peak leading to decorrelation effects.
To analyze how magnetic field-line stretching operates

at different length scales, we utilize a coarse-graining
approach for diagnosing multiscale dynamics [7,16]. A
coarse-grained field which contains modes at length scales
> l is defined by flðxÞ ¼

R
drGlðr − xÞfðrÞ, where

GlðrÞ≡ l−3Gðr=lÞ is a normalized kernel with its main
weight in a ball of diameter l. Coarse-grained MHD
equations can then be written to describe ul and Bl, along
with corresponding budgets for the quadratic invariants at
scales ≥ l, for arbitrary l in contrast to the mean field
approach [17,18] (see Ref. [16] and references therein).
Hereafter, we drop subscript l when possible.
The KE and ME density balance at scales > l are

∂t

�juj2
2

�
þ∇ · ½� � �� ¼−Πu

l−SijBiBj−νj∇uj2þ f ·u; ð5Þ

∂t

�jBj2
2

�
þ ∇ · ½� � �� ¼ −Πb

l þ SijBiBj − ηj∇Bj2; ð6Þ

where ∇ · ½� � �� represents spatial transport terms.
Dissipation terms νj∇uj2 and ηj∇Bj2 are mathematically
guaranteed to be negligible [16,19] at scales l ≫ ðlν;lηÞ,
with lν and lη the viscous and resistive length scales,
respectively.
The first term on the rhs of Eq. (5), Πu

l, appears as a sink
in the KE budget of large scales > l and as a source in the
KE budget of small scales < l [16]. It quantifies the KE
transfer across scale l and is defined as Πu

l ≡ −Sijτij,
where τij ¼ τlðui; ujÞ − τlðBi; BjÞ is the sum of both the
Reynolds stress and the Maxwell stress generated by scales
< l acting against the large-scale strain, Sij. Subscale

stress is defined as τlðf; gÞ ¼ ðfgÞl − flgl for any two
fields f and g. Similarly,Πb

l ≡ −Jl · εl in Eq. (6) quantifies
the ME transfer across scale l, where εl ≡ u × B − u × B
is (minus) the electric field generated by scales < l acting
on the large-scale current J ¼ ∇ ×B resulting in a “turbu-
lent Ohmic dissipation” to the small scales.
Term Bl · Sl ·Bl appears as a sink in Eq. (5) and a

source in Eq. (6) representing KE expended by the large-
scale flow to bend and stretch large-scale B lines. Unlike
the cascade terms Πu

l and Πb
l, which involve large-scale

fields acting against subscale terms (τl and εl), Bl · Sl ·
Bl is purely due to large-scale fields and does not
participate in energy transfer across scale l. A more
refined scale-by-scale analysis in Ref. [6] showed how
energy lost or gained from one field (u or B) by line
stretching reappeared in or disappeared from the other field
at the same scale.

In a steady state, space-averaging Eqs. (5) and (6) at any
scale l in the inertial-inductive range L ≫ l ≫ ðlν;lηÞ
yields

hΠu
li ¼ ϵinj − CubðlÞ; ð7Þ

hΠb
li ¼ CubðlÞ; ð8Þ

where we have dropped the dissipation terms and assumed
that forcing is due to modes at scales ∼L ≫ l, such that
fl ¼ f. Mean conversion CubðlÞ≡ hSijBiBji in Eqs. (7)
and (8) quantifies the cumulative KE-to-ME conversion at
all scales > l.
Using scale locality of the cascade terms Πu

l and Πb
l,

which was proved in Ref. [6], we will now argue that
mean magnetic field-line stretching is primarily a large-
scale process which vanishes at intermediate and small
scales within the inertial-inductive range. Note that the
scale locality discussed in Refs. [6,7] is “diffuse” [20] and
states that contributions from disparate scales decay only as
a power law of the scale ratio.
Define ld as the largest scale at which nonideal micro-

physics becomes significant, ld ¼ maxðlν;lηÞ. Define the
cumulative KE-to-ME conversion at scales > ld by
Cubd ≡ CubðldÞ, which is not necessarily equal to the unfil-
tered hB · S ·Bi due to possible contributions from scales
< ld [see discussion shortly after Eq. (10) below].
Define ls as the largest scale at which CubðlsÞ ¼ Cubd .

We will argue that (i) ls ≠ ld and (ii) CubðlÞ ¼ Cubd for all
scales ls > l ≫ ld.
First, assume ls ¼ ld. This implies that as functions of

l, CubðlÞ ¼ hΠb
li ¼ ϵinj − hΠu

li depend on dissipative
parameters ν or η. However, hΠu

li and hΠb
li are scale local

in the inertial-inductive range [6] and are insensitive to the
microphysics when l ≫ ld. Therefore, ls ≠ ld. Second, if
CubðlÞ ≠ Cubd over ls > l ≫ ld, then CubðlÞ, which we
assume is continuous, will have an extremum at a scale l�
within that range [since CubðlsÞ ¼ CubðldÞ ¼ Cubd �.
Therefore, hΠu

li and hΠb
li will also have extrema, indicat-

ing the existence a special scale l� in the inertial-inductive
range, in conflict with scale invariance of ideal MHD.
Therefore, CubðlÞ → Cubd within a conversion range L >

l > ls and, over the ensuing range ls > l ≫ ld, it
saturates at CubðlÞ ¼ Cubd . Since CubðlÞ measures the
cumulative KE-to-ME conversion at all scales > l, satu-
ration implies a zero contribution from ls > l ≫ ld. We
conclude that mean KE-to-ME conversion hSijBiBji is a
large-scale process within the inertial-inductive range,
acting over a conversion range L > l > ls of limited
extent; i.e., the scale-range does not increase asymptotically
with the Reynolds number. Mean KE and ME budgets
decouple in the absence of conversion over the “decoupled
range” of scales ls > l ≫ ld:
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hΠu
li ¼ ϵinj − Cubd ; ð9Þ

hΠb
li ¼ Cubd : ð10Þ

With the rhs of Eqs. (9) and (10) being independent of scale
l, KE and ME each cascades conservatively after the
mechanism coupling them halts. Scale locality suggests
that the normalized KE and ME cascade rates hΠui=ϵinj and
hΠbi=ϵinj should have a universal value of order unity over
ls > l ≫ ld, regardless of the forcing, Pm ¼ ν=η, or B0.

Note that scale ls at which the budgets decouple is within
the inertial-inductive range, despite the well-known non-
equipartition of KE and ME spectra in that range [21–24]
(see Fig. 8 in the Supplemental Material [25]).
While the above argument suggests that CubðlÞ should

become constant at scales smaller than the conversion
range, it only applies within the inertial-inductive range,
L ≫ l ≫ ld. It is possible for CubðlÞ to vary again when
transitioning to scales ≲ld. An example is the viscous-
inductive (Batchelor) range lν ≫ l ≫ lη over which a
scale-by-scale analysis in Ref. [6] showed that magnetic
field-line stretching can act as a forcing term in the ME
budget, consistent with our understanding of high Pm
flows [44,45]. The above argument for saturation of CubðlÞ
breaks down at scales≲ld, such as in the viscous-inductive
range where scale locality does not hold due to a smooth
velocity field [6].
Our conclusions are supported by a suite of pseudo-

spectral direct numerical simulations up to 20483 in
resolution with phase-shift dealiasing using hyperdiffusion
and other parameters summarized in Table I.
Figure 1 shows results from the five flows we consider at

the highest resolution (see Supplemental Material [25] for
lower resolution runs and evidence of convergence). In all
runs, total energy being a global invariant is transferred
conservatively across scales L ≫ l ≫ ld, as indicated by a
scale-independent total energy flux, hΠli ¼ hΠu

l þ Πb
li.

TABLE I. Each suite of runs was carried out at different
Reynolds numbers at 2563, 5123, and 10243 resolutions. Run
V was also conducted at 20483 resolution. Pm ¼ ν=η is the
magnetic Prandtl number. Bmax

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxk½EbðkÞ�

p
is at the mag-

netic spectrum’s [EbðkÞ] peak. Arn’old-Beltrami-Childress
(ABC) (helical) and Taylor-Green (TG) (nonhelical) forcing
were applied at wave number kf. More details are in the
Supplemental Material [25].

Run Forcing kf Pm jB0j=Bmax
k

I ABC 2 1 0
II ABC 2 1 10
III TG 1 1 0
IV TG 1 2 0
V ABC 2 1 2
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1

Run II
c

100 101 102 103
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d
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FIG. 1. The first five panels show hΠi ¼ hΠu þ Πbi, hΠui, hΠbi, and hSijBiBji as a function of k≡ 2π=l from our highest resolution
runs (10243 for runs I to IV and 20483 for run V; see Supplemental Material [25] for lower resolutions). In the top-left panel, the
conversion (decoupled) range is shaded red (blue). All plots are time averaged and normalized by ϵinj. The horizontal straight dashed line
is at 0.5. Bottom-right panel shows a log-log plot of relative residual conversion RubðkÞ=Cubd and a reference black-dashed line with a
−2=3 slope, suggesting that KE-to-ME conversion saturates in a manner consistent with scale locality [6].
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Both Πu
l and Πb

l decay to zero at scales ≲ld when the
nonlinearities shut down in the dissipation range. Mean
KE-to-ME conversion CubðlÞ increases from 0 at the
largest scales to ≈Cubd ≈ ϵinj=2 at an intermediate scale ls

within the inertial-inductive range. Over the ensuing range,
ls > l ≫ ld, CubðlÞ is scale independent, indicating a
negligible contribution to magnetic field-line stretching at
these scales. There is a slight increase in CubðlÞ in the
dissipation range at scales ≲ld where our argument is not
expected to hold due to a lack of scale locality. In all cases,
hΠb

li ≈ CubðlÞ and Πu
l ≈ ϵinj − CubðlÞ over the inertial-

inductive range, consistent with Eqs. (7) and (8).
Beyond the conversion range, scale transfer becomes
independent of l, hΠu

li ≈ ϵinj − Cubd and hΠb
li ≈ Cubd over

ls > l ≫ ld, consistent with Eqs. (9) and (10), and
indicative of a conservative cascade of KE and ME energy,
respectively. In all runs, we observe that the KE and ME
cascade rates become equal in magnitude hΠu

li ≈ hΠb
li over

ls > l ≫ ld, with magnetic field-line stretching channel-
ing ≈1=2 of the injected energy to the magnetic field,

regardless of the forcing, Pm, or B0, consistent with scale
locality.
Among the five cases in Fig. 1, the conversion range

is widest in the presence of jB0j=Bmax
k ¼ 10 (run IIc).

However, according to our argument, its extent cannot
increase indefinitely with an increasing dynamic range of
scales (or Reynolds number, Re). After all, hB · S ·Bi is
bounded even in the jB0j → ∞ limit. Indeed, a plot of
the relative residual conversion RubðlÞ=Cubd ≡ hBld · Sld ·
Bld

− Bl · Sl ·Bli=hBld · Sld ·Bldi in Fig. 1 (and Fig. 5
in the Supplemental Material [25]) decays at least as fast
as a power law as l → ld, consistent with what is expected
from scale locality (we take ld as the scale at which
hΠli ¼ ϵinj=2). Moreover, plots of CubðlÞ at increasing Re
(Fig. 4 in the Supplemental Material [25]) show a clear
convergence to Cubd ≈ ϵinj=2.
The negligible mean KE-to-ME conversion at small

scales within the decoupled range might seem counterin-
tuitive at first. After all, a hallmark of MHD turbulence is
Alfvén waves which are fastest at small scales. The

FIG. 2. For scale l ¼ 2π=30 (k ¼ 30) from run IIc in Fig. 1 at one instant in time: Top two panels show a 2D slice from the 3D domain
of pointwise conversion at large scales Bl · Sl ·BlðxÞ (top left) and small scales Bld

· Sld ·BldðxÞ − Bl · Sl ·BlðxÞ (top right). B0 is
in the z direction. Bottom two panels show probability density function of conversion as a function of x at large scales (bottom left) and
small scales (bottom right). The large-scale distribution has mean of 0.43 and variance of 223.54. The small-scale distribution has mean
of 0.09 and variance of 3060.84. Quantities are normalized by energy injection rate ϵinj. Un-normalized Gaussians (green dashed lines)
are added to both plots.
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decoupling of ME and KE budgets poses no contradiction
since it is only in the mean, which allows for decorrelation
effects at small scales similar to those arising in compress-
ible turbulence [46,47]. Utilizing the simultaneous informa-
tion in both scale and space afforded by our coarse-graining
approach, we analyze Bl · Sl ·BlðxÞ acting on scales > l
and the residual conversion within the inertial-inductive
range Bld · Sld ·BldðxÞ −Bl · Sl · BlðxÞ as a function of
space x in Fig. 2. For an intermediate scale l ¼ 2π=30 from
run IIc (and run Ic in Fig. 7 of the Supplemental Material
[25]), Fig. 2 shows how magnetic field-line stretching,
which is concentrated in magnetic filaments, is an order
of magnitudemore intense at scales smaller thanl ¼ 2π=30
compared to larger scales. Yet, the small-scale contribution
fluctuates vigorously in sign, yielding a mere 17% (10% in
run Ic in Fig. 7 of the Supplemental Material [25]) to the
space average. To illuminate the role of waves, we repeat in
the Supplemental Material [25] the analysis above on two
examples of noncolliding Alfvén waves, a monochromatic
wave and a wave packet, which are exact solutions of the
MHD equations and which lack energy transfer between
scales.
In conclusion, small scales of the magnetic field in

the decoupled scale range are maintained, on average,
by turbulent Ohmic dissipation (the ME cascade),
hΠbi ¼ hJ · εi. Magnetic field-line stretching acts on aver-
age as a large-scale driver of the ME cascade, justifying the
inclusion of a low-mode forcing in the induction Eq. (2)
when resolving the transitional conversion range is unim-
portant, such as in high-Re asymptotic scaling studies of
MHD turbulence [48–50]. Our results will help in deriving
relations equivalent to the Politano-Pouquet relations [51]
but for the separate cascades of KE and ME, with potential
implications on the scaling in MHD turbulence. This work
can also help subgrid scale model development and testing
in large eddy simulations of MHD turbulence [52,53]. For
example, it provides a direct measure of the turbulent
magnetic Prandtl number, which is unity within the
decoupled range due to equipartition of the cascades
hΠu

li ¼ hΠb
li. This has important implications in astro-

physical flows such as accretion disks [12,14,15]. Our
findings are also relevant for turbulent magnetic reconnec-
tion [22,54,55] since they imply that the net bending and
twisting of magnetic field lines at length scales in the
decoupled range is driven by the effective electric field −εl
rather than by the flow’s strain, giving independent support
to previous studies [22,56]. Our framework for quantifying
field-line stretching at various scales may also prove
insightful in magnetic dynamo studies [57–60].
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