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The theoretical understanding of surface nanobubbles—nanoscale gaseous domains on immersed
substrates—revolves around two contrasting perspectives. One perspective, which considers gas transport
in the nanobubbles’ vicinity, explains numerous stability-related properties but systematically under-
estimates the dynamical response timescale by orders of magnitude. The other perspective, which considers
gas transport as the bulk liquid equilibrates with the external environment, recovers the experimentally
observed dynamical timescale but incorrectly predicts that nanobubbles progressively shrink until
dissolution. We propose a model that couples both perspectives, which is capable of explaining the
stability, dynamics, and unexpected tolerance of surface nanobubbles to undersaturated environments.
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Surface nanobubbles are long-lived, gaseous domains
found on immersed hydrophobic substrates [1–5]. Their
discovery two decades ago was greeted with scepticism, as
nanobubbles were claimed to have lifetimes many orders
longer than predicted by the well-established theory of
Epstein and Plesset [6]. While the existence of the nano-
bubbles is now undoubted, no single theory explains all of
their unusual properties.
In the past decade, the theoretical understanding of

surface nanobubbles has coalesced around two contrasting
perspectives. The first perspective focuses on gas transport
throughout the bulk liquid. Weijs and Lohse [7] treat a
newly nucleated nanobubble as a source of gas over-
saturation, which dissipates by diffusion as the liquid
equilibrates to saturation. As gas transport occurs within
a liquid pool with characteristic length l, the global
diffusion timescale is τG ∼ l2=D (D is the diffusion
constant). As the authors note, τG ∼ 10 hr, if l ∼ 1 cm.
However, surface nanobubbles are predicted to shrink
progressively until they dissolve at τG, which is at odds
[8] with the experimental finding that they exhibit little
change in morphology over many days [3,9].
Alternatively, Lohse and Zhang [10] and Chan, Arora,

and Ohl [11] consider gas transport only in the immediate
vicinity of the nanobubble. When the liquid is supersatu-
rated—necessary for bubble nucleation—line pinned sur-
face nanobubbles can become indefinitely stabilized, a
satisfying conclusion consistent with their seemingly
infinite lifetimes [12]. However, numerous experimental
observations contradict the pinning-oversaturation hypoth-
esis, including that nanobubbles cannot survive in liquid
equilibrated to atmospheric pressure, a condition easily

achieved in experiments [13]. Nanobubbles even survive
incubation for hours in undersaturated liquid [9,14,15].
Moreover, because the model is based on an exact solution
for a spherical cap bubble, the resulting dynamics follows the
local diffusive timescale τL∼L2=D∼μs (where L is the
footprint radius [Fig. 1(a)]). Yet, nanobubbles in experiments
respond to changes in gas concentrations over tens of
minutes [16] to hours [9,13,14], differing by τL by orders
of magnitude.
The discrepancy between the two perspectives arises

because each implicitly forces a choice of working in either
the bubble’s or the bulk liquid’s operating length and time-
scales. In this Letter, we combine both perspectives into a
unified description that accurately captures both equilibrium
and dynamic properties of surface nanobubbles.
We begin with the global gas transport problem consid-

ered by Weijs and Lohse [7]. Consider a semi-infinite pool
of liquid that rests upon a solid substrate; see Fig. 1(a). As
the liquid pool (thickness l) is finite only in one dimension
(z), diffusion in this semi-infinite geometry obeys

∂c
∂t ¼ D

∂2c
∂z2 ; ð1Þ

where c is the dissolved gas concentration and z is the
separation from the substrate. Next, we define the boundary
conditions (BC) at the spatial extremities of the computa-
tional domain. At the interface between the liquid pool and
the external world, the concentration has the fixed value

cðz ¼ lÞ ¼ ci: ð2Þ
Under typical conditions, the dissolved gas concentration is
at saturation, i.e., ci ¼ csat ¼ P0=kH (where kH is Henry’s
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constant). In the Weijs-Lohse model, the BC at the solid
substrate is directly coupled to the bubble’s pressure, but
this leads to the incorrect conclusion that the nanobubbles
will eventually dissolve [8]. Instead, we prescribe

∂c
∂z

�
�
�
�
z¼0

¼ 0; ð3Þ

as the substrate is an impermeable boundary. The problem
is closed by defining an initial concentration profile
cðz; t ¼ 0Þ.
To model an experiment under laboratory conditions, we

assume that at t ¼ 0 the liquid is homogeneously over-
saturated to c0 ¼ 1.5csat and equilibrates to exact saturation
ci ¼ csat. From Eqs. (1)–(3), we obtain concentration
profiles cðz; tÞ, which we plot at intervals of 60 s in
Fig. 1(c). We track c0ðtÞ ¼ cðz ¼ 0; tÞ [Fig. 1(d)], whose
utility will be apparent later. If l ¼ 1 mm, the bulk liquid
becomes fully equilibrated with the external world over the
timescale τG ∼ l2=D ∼ 1000 s or 15 min and reaches
∼10 hr if l ∼ 1 cm.
Next, we consider the local gas transport problem in the

nanobubble’s vicinity, shown in Fig. 1(b). Adapting
Popov’s theory—originally used to model droplet evapo-
ration [17,18]—for nanobubbles, Lohse and Zhang [10]
defined the following boundary conditions. The BC at the
bubble interface is given by Laplace’s and Henry’s laws,
i.e., cbub ¼ ðP0 þ 2γ=RÞ=kH, while in the far field the bulk
liquid concentration holds the fixed value c0. Defining the
oversaturation ζ ¼ c0=csat − 1 and setting cbub ¼ csat, one
obtains [10]

ζ ¼ 2γ sin θe=LP0; ð4Þ
where θe is the equilibrium contact angle and γ is surface
tension. Equation (4) has some problematic implications.
For example, as it is positive definite, nanobubbles cannot
exist under ambient (ζ ¼ 0) or undersaturated (ζ < 0)
conditions. Moreover, when compared against experi-
ments, Eq. (4) predicts unrealistically large bulk supersat-
urations [13,19] of ζ > 5–10; a water-ethanol exchange
produces ζ ≈ 1.85 at most [20].
Recently, we proposed a simple modification [21] to the

pinning-oversaturation model that resolves the above-
mentioned objections. Nanobubbles typically nucleate on
hydrophobic substrates, which preferentially draw gas
molecules over liquid. If this attraction can be cast as a
potential ϕðzÞ, the distribution of dissolved gas obeys [22]

cðzÞ ¼ c0 exp

�

−
ϕðzÞ
kBT

�

: ð5Þ

In Fig. 1(e), we plot the localized concentration fields
induced by two hydrophobic attraction potentials, as
implied by Eq. (5): (a) a short-ranged hydrophobic poten-
tial ϕhðzÞ ¼ ϕ0e−z=λ, where ϕ0 < 0 and the interaction
distance is λ ¼ 1 nm, and (b) a van der Waals potential

ϕvðzÞ ¼ A=z9 − B=z3, utilizing the parameters A and B for
an interaction between a typical gas and hydrophobic solid
that has been suggested by Yasui et al. [23]. In potential-
free regions far from the substrate, cðz ≫ λÞ ¼ c0.
With a spatially varying oversaturation surrounding the

bubble, it can be shown that the bubble’s dynamical
equation is generalized to [21]

dθ
dt

¼−
Dcsat
2ρgL2h

ð1þ cosθÞ2fðθÞ
Z

h

0

�
2γ

LP0

sinθ−ζðzÞ
�

dz;

ð6Þ

where P0 is atmospheric pressure, ρg is the density of the
gas, fðθÞ is a geometric factor from Popov’s solution [17],
and csat is the saturation concentration of the dissolved gas.
The bubble height h can be expressed in θ using h ¼
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − cos θÞ=ð1þ cos θÞp

.
Equation (6) is solved for a nanobubble for L ¼ 100 nm

and an initial contact angle θðt ¼ 0Þ ¼ 5° for ϕv and
ϕh for ϕ0=kBT ¼ −1 (hydrophobic) and ϕ0=kBT ¼ 0
(Lohse-Zhang model), and following Refs. [10,21] we
assume D¼2×10−9m2=s, csat¼0.017kg=m3, and ρg¼
1.165kg=m3. The liquid is at saturation c0 ¼ csat in the
far field. The dynamics of surface nanobubbles under
Eq. (6) are shown in Fig. 1(f), which shows that the
nanobubble is unstable at zero potential but stabilized by
ϕh and ϕv. We note, however, that all three analytical curves
differ from an exact numerical solution to the diffusion
equation, as pointed out recently by Zhu et al. [24]. This
originates from the fact that both Refs. [10,21] solve the
diffusion equation in the quasistatic limit (i.e., the Laplace
equation) in order to achieve an analytically tractable form.
However, we stress—and it is confirmed in Ref. [24]—that
the principal conclusions of both Refs. [10,21] are unaltered,
because the equilibrium θ is unaffected by the use of the
quasistatic approximation; the dissolution timescale τL
remains ∼μs.
How does the stabilization work? Nanobubbles have the

largest surface area at their footprints. The gas-enriched
reservoir provides an influx of gas for z < λ that can
compensate for outfluxes at z > λ. This effect becomes even
more pronounced as the bubble shrinks—a larger proportion
of the bubble is within the supersaturated zone, the presence
of which leads to stable equilibrium [11]. And what is the
evidence that substrate hydrophobicity influences stability
and dynamics? Molecular simulations have recently dem-
onstrated that substrate hydrophobicity enhances nanobub-
bles’ resilience to dissolution [25], while nucleation
experiments with AFM show that the contact angles of
nanobubbles increaseswith substrate hydrophobicity [26], as
we predict [21].
Despite its ability to account for nanobubble properties at

equilibrium, our model in Ref. [21] does not correctly
capture the dynamic response of nanobubbles, which is in
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practice orders of magnitude slower than our model
predicts. Our approach is to couple the local and global
theoretical perspectives. First, we couple the problems in
space by assigning the “bulk concentration” in the local
problem c0 to the substrate concentration in the global
problem [Figs. 1(a) and 1(b)]. This coupling assumes that
any buildup of gas within z ≤ λ ≪ l of the substrate
contributes negligibly to global gas transport. Next, the
problems are coupled in time. Consider that the local gas
concentration around the nanobubble [Figs. 1(a) and 1(b)]
at some time is c0ðtÞ. Since τG ≫ τL, we assume that, when
the system has c0ðtÞ, the nanobubble has already reached
its equilibrium contact angle θe. In other words, there is no
need to calculate θe by solving the full ordinary differential
equation in Eq. (6); rather, we solve for its critical point

Z
h

0

�
2γ

LP0

sin θ − ζðzÞ
�

dz ¼ 0: ð7Þ

The long-time dynamics of the nanobubble is evaluated
by solving c0ðtÞ with Eqs. (1)–(3) and using Eq. (7) to
obtain θðtÞ.
Equilibration.—First, we investigate how a nanobubble

would behave in a typical experiment. Surface nanobubbles
typically require a supersaturated environment to nucleate
[5], so in Fig. 2(a) we consider that c0=csat initially has a
spatially uniform [e.g., topmost curve in Fig. 1(c)] super-
saturated value (c0=csat > 1) and model equilibration to

co
nt

ac
t a

ng
le

   
  (

º)

(a) (c) (d)

(b) (e) (f)

FIG. 1. Two perspectives of nanobubble stability. (a) The global perspective considers transport from bulk liquid to the external world
through a semi-infinite pool of thickness l. (b) The local perspective focuses on gas transport surrounding a nanobubble. We assume that
the substrate possesses a hydrophobic attraction ϕ with interaction distance λ; note that cðz ≫ λÞ ¼ c0. (c) Numerical solution of the
global problem [Eqs. (1)–(3)], for l ¼ 1 mm and ci ¼ csat. Concentration profiles cðzÞ are captured every 60 s, from top to bottom.
(d) Temporal evolution of c0=csat, the leftmost point of each curve in (c). (e) For common potentials such as van der Waals (green line) or
the short-range hydrophobic attraction (red line), λ ∼ 1 nm. (f) The dynamics of a gas nanobubble with L ¼ 100 nm under atmospheric
conditions (c0=csat ¼ 1 or ζ ¼ 0) with short-range hydrophobic attraction ϕ0=kBT ¼ −1 (red line), van der Waals (green line), or zero
potential (Lohse-Zhang model [10], dashed line). The gas concentration in the far field is exactly saturated c0 ¼ csat. Note the substantial
(8 orders’) difference in timescales between (d) and (f).

(a) (b)

FIG. 2. The long-time dynamics of nanobubbles under equili-
bration and undersaturation as predicted by the combined
model. We assume the short-ranged hydrophobic potential ϕh,
forϕ0=kBT ¼ −2, λ ¼ 1 nm, andL ¼ 200 nm. (a)Equilibration to
atmospheric conditions is investigated with the liquids initially
supersaturated to various degrees 1 < c0=csat < 3. (b) The nano-
bubbles’ response to undersaturation is investigated with the liquids
at a common supersaturation of c0=csat ¼ 2 and compelling the
liquid to relax to various degrees of undersaturation 0<ci=csat<1.
In all cases, except the bottommost curves in (b), the nanobubble
attains an equilibrium contact angle after τG and remains there
indefinitely.
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atmospheric conditions by fixing ci ¼ csat. The evolution
of c0ðtÞ and θðtÞ for nanobubbles in these conditions is
shown in Fig. 2(a). Surface nanobubbles evolve over the
global timescale τG, reaching an equilibrium when
c0 ¼ csat. The plots agree with experiments by An et al.
[13] finding that nanobubbles exhibit substantial changes
within several hours of nucleation, before remaining largely
invariant for days afterward.
Undersaturation.—Next, we study how nanobubbles

dynamically respond in undersaturated conditions. In
Fig. 2(b), we plot the substrate-side gas concentration
c∞ðtÞ and the nanobubble’s contact angle θðtÞ evolving
as an initially supersaturated liquid relaxes towards differ-
ent degrees of undersaturation, implemented by modifying
the boundary condition at the liquid-gas interface [Eq. (2)]
such that 0 < ci=csat < 1.
The nanobubbles’ dynamic response to undersaturation

is similar to their response to equilibration—again, they
shrink over timescale τG to a new and lower contact angle,
where they then remain indefinitely. This behavior is
consistent with experimental observations of nanobubbles
[9] incubated in an undersaturated environment for hours.
Tolerance to undersaturation.—A key feature of the

dissolution curves [Fig. 3(b), lower] is that nanobubbles do
not simply dissolve once the dissolved gas concentration

falls below csat. This is a manifestation of tolerance, c�i ,
which we define as the largest ci for which θe ¼ 0°. To
determine the tolerance of a hydrophobic substrate, we
solve Eq. (7) for various potentials as a function of ci=csat,
including ϕh (strengths ϕ0=kBT ¼ 0;−1;−2) and ϕv
[Fig. 3(a)], with c�i =csat being the x intersect of each curve.
A surface nanobubble with L ¼ 200 nm has tolerance
c�i =csat ≈ 0.3–0.4 for ϕv and ϕh with ϕ0=kBT ¼ −1.
Tolerance to undersaturation is a reproducible experi-

mental feature of surface nanobubbles. On atomically flat
graphite, nanobubbles survive a modest undersaturation [9]
to ci=csat ≈ 0.9 yet dissolve under a substantial under-
saturation [14] of ci=csat ≈ 0.1; thus, c�i =csat > 0.1. More
recently, Qian, Craig, and Jehannin [15] have found
that, for nanobubbles on a silanized silicon wafer,
c�i =csat < 0.19. Even though tolerance to undersaturation
has been known for over a decade [14], major theories in
the literature predict that surface nanobubbles will immedi-
ately dissolve under any degree of undersaturation; overall,
little effort has been made to understand the mechanistic
origin of the tolerance.
In our model, the tolerance to undersaturation arises

directly from substrate hydrophobicity, which we show in
Fig. 3(b) by varying the strength ϕ0 of ϕh across
−3 < ϕ0=kBT < 1. For zero potential (i.e., Lohse-Zhang
model [10]) or a hydrophilic substrate, the nanobubble
unconditionally dissolves in undersaturated liquid. But as
the hydrophobicity increases, c�i =csat → 0 asymptotically,
at which limit gas molecules cannot be destabilized by any
degree of degassing. Furthermore, the idea that tolerance
develops from substrate hydrophobicity has recently been
confirmed in molecular dynamics simulations [25]. Finally,
the slow approach to c�i =csat → 0 in the hydrophobic limit
in Fig. 3(b) indicates that the tolerance is below 50%
saturation and remains approximately constant over poten-
tial strengths ϕ0=kBT < −1. This suggests that a wide
variety of hydrophobic substrates should exhibit a strong
and approximately uniform tolerance to undersaturation.
We anticipate that our predictions can be tested in the near
future against, e.g., AFM experiments in which the degree
of undersaturation is carefully controlled and increased
over many hours (or even days). While the c�i of widely
used substrates are currently known only to broad ranges,
we envisage that systematic studies will be able to narrow
c�i down to precise, substrate-specific values.
In conclusion, our Letter unifies local and global trans-

port models for surface nanobubbles within a single
description that can now simultaneously account for their
behavior at equilibrium and as they dynamically approach
equilibrium. This model also accounts for a puzzling
feature that has long been observed in the literature but
not explained—that nanobubbles on hydrophobic sub-
strates exhibit a finite tolerance to undersaturation.
Given the florid terms (“minute miracles” [27]) with

which surface nanobubbles have been described, it might

(a)

(b)

FIG. 3. How surface nanobubbles (L ¼ 200 nm) resist under-
saturated conditions. (a) The equilibrium angle of a nanobubble
as a function of the dissolved gas concentration coupled from the
external environment, ci=csat, for different interactions: short-
range hydrophobic attraction ϕh for ϕ0=kBT ¼ 0;−1;−2 and van
der Waals ϕv. The tolerance to undersaturation, c�i , is defined as
the largest ci for which the equilibrium angle θe ¼ 0°; c�i for each
potential is indicated by arrows. (b) Systematically adjusting the
strength of ϕh resolves the development of tolerance as a function
of hydrophobicity (ϕ0 < 0 for a hydrophobic substrate). Nano-
bubbles immediately dissolve under any degree of undersatura-
tion for zero potential (Lohse-Zhang theory) or hydrophilic
potentials.
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be expected that a viable explanation for their stability and
dynamics may require novel or unexpected physics. To the
contrary, the strong agreement our model achieves with the
experiment hinges on a careful quantification of gas
transport at the local and global scales and requires only
reasonable and well-accepted assumptions such as contact
line pinning, well-defined diffusion length scales, and
substrate hydrophobicity.
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