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Irreversible random sequential deposition of interacting particles is widely used to model aggregation
phenomena in physical, chemical, and biophysical systems. We show that in one dimension the exact time-
dependent solution of such processes can be found for arbitrary interaction potentials with finite range. The
exact solution allows us to rigorously prove characteristic features of the deposition kinetics, which have
previously only been accessible by simulations. We show in particular that a unique interaction potential
exists that leads to a maximally dense line coverage for a given interaction range. Remarkably, this potential
is singular and can only be expressed as a mathematical limit. The relevance of these results for models of
nucleosome packing on DNA is discussed. The results highlight how the generation of an optimally dense
packing requires a highly coordinated packing dynamics, which can be effectively tuned by the interaction
potential even in the presence of intrinsic randomness.
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The deposition of particles on a substrate is a ubiquitous
phenomenon in science and engineering [1]. From a
theoretical perspective, the deposition dynamics is widely
modeled in terms of a random sequential adsorption (RSA)
process, which represents a paradigmatic adsorption
mechanism [2]. Since Rényi’s seminal work on the “car
parking problem” (the RSA of equal line segments in 1d)
[3,4], RSA models and their variants have been success-
fully used to model polymer and colloid adsorption on
surfaces [5–7] and are also relevant in other contexts, such
as the compactification of granular matter [8,9], genome
sequencing [10], and nucleosome packing on DNA
[11–15]. However, in almost all studies, particles have
been assumed to interact solely through hard-core steric
exclusion, despite the fact that realistic particles typically
interact with a soft-core potential due to their internal
structure [16]. In fact, including soft particle interactions
significantly alters the filling behavior and can account,
e.g., for the observed rapid filling of nucleosomes on DNA
[14,15,17]. In this work, we derive the exact time-depen-
dent solution of 1d continuum RSA processes with
arbitrary finite-range particle interactions using an iterative
approach. This method also provides the exact general
solution of the related RSA of polydisperse particles, which
has been an open problem since the 1960s for the con-
tinuum 1d case [18–24], notwithstanding specific scaling
solutions that have been found [20–23]. The exact solution
allows us, in particular, to address the fundamental question
of how the packing density of the deposition process can be
optimized by tuning the particle interactions or size dis-
tribution. Remarkably, the solution reveals that a unique
interaction potential or size distribution exists that leads to a
maximally dense coverage of the line, which is approached
in time as ∼t−ν, where ν → 0þ is infinitesimally small.

In RSA, a particle’s position is selected with uniform
probability over the domain and it is then placed sequen-
tially depending on the overlap with any previously placed
particles. Particles are not able to move or reorient once
being placed. In order to parametrize the RSA dynamics of
equal particles by a rate equation in 1d, we define an
interval x as the distance between the centers of two
nearest-neighbor particles on the line of length L and
introduce Nðx; tÞdx as the number of intervals with size
∈ ½x; xþ dx� at time t. The definition of x implies thatR
L
0 dx xNðx; tÞ ¼ L is a conserved quantity of the dynam-
ics for all t. The interval distribution pðx; tÞ is defined as
pðx; tÞ ¼ ðλ=LÞNðx; tÞ, where λ is a characteristic length
scale associated with the particles [25]. Scaling length as
x → x=λ and considering the limit L → ∞, the time
evolution of pðx; tÞ is exactly described by the master
equation,

∂
∂t pðx; tÞ ¼ −ψðxÞpðx; tÞ þ 2

Z
∞

x
dyΩðx; yÞpðy; tÞ; ð1Þ

where the first term on the rhs describes the destruction of
intervals of length x and the second term describes the
creation. Ωðx; yÞ is the probability per unit time that a
particle is placed inside an interval of length y, thus creating
an interval of length x. The factor 2 stems from the fact
that in 1d there are always two ways of doing this for a
given y (x is the distance of the newly inserted particle
with either the existing left or right particle). The destruc-
tion term is accordingly governed by the function
ψðxÞ ¼ R

x
0 duΩðu; xÞ. The interval distribution satisfiesR∞

0 dx xpðx; tÞ ¼ 1 for all t. Moreover, since one
particle is associated with every interval x, the integral
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R
∞
0 dxpðx; tÞ ¼ nðtÞ equals the number density of particles.
The requirement of an initially empty line thus leads to the
initial condition nð0Þ ¼ 0 or pðx; 0Þ ¼ 0. From Eq. (1) this
implies that limt→0ð∂=∂tÞpðx; tÞ ¼ 0, but one can show
that limt→0ð∂2=∂t2Þpðx; tÞ > 0, such that nðtÞ monotoni-
cally increases with time. The key quantity of interest is the
line coverage (packing density),

ϕðtÞ ¼ 1 −
Z

∞

σ
dxðx − σÞpðx; tÞ; ð2Þ

where σ denotes the effective size (diameter) of a particle
(defined below). Note that for soft particles nðtÞ and ϕðtÞ
have very different long-time behaviors: while the jamming
density ϕJ ¼ limt→∞ϕðtÞ ≤ 1, nðtÞ can diverge as t → ∞,
since particles can be absorbed inside existing particles. By
contrast, for hard particles they are directly related as
ϕðtÞ ¼ σnðtÞ [6].
The simplest example of a deposition process governed

by Eq. (1) is Rényi’s seminal car parking problem, where
particles only interact by steric repulsion [3,4,26,27]. In this
case, an exact solution for pðx; tÞ is known and yields as
hallmark features ϕJ ¼ 0.7475…≡ ϕR with the algebraic
asymptotic approach ϕJ − ϕðtÞ ∼ t−1. Other models of the
form Eq. (1) have been solved for specific Ω that lead to
scale invariant solutions p, e.g., RSA [20–23] and frag-
mentation processes [28–31]. In the following, an exact
analytical solution is derived much more generally without
the requirement of scale invariance.
For interacting particles we assume the form

Ωðx; yÞ ¼ kþωðxÞωðy − xÞ; ð3Þ

where the adsorption rate kþ sets the timescale (set to unity)
and ωðxÞ describes the modification in the rate due to
particle overlap. The particle interactions are constrained as
follows: (i) ωðxÞ ¼ 1 for x ≥ a, i.e., a is the finite range of
the interaction, and (ii) ωðxÞ ¼ 0 for x ≤ Δ, i.e., Δ is the
hard-core exclusion volume of a particle. Clearly, (i) and
(ii) are satisfied for almost all realistic particle models at
least to a good approximation. The hard particle case of
Rényi is obtained as ωðxÞ ¼ Θðx − aÞ with Δ ¼ a, where
ΘðxÞ denotes the Heaviside step function.
The properties (i) and (ii) of ωðxÞ constrain the

form of ψ and Ωðx; yÞ as (see Sec. I of Supplemental
Material [32]):

Ωðx; yÞ ¼ ωðy − xÞ; x ≥ a; ð4Þ
ψðxÞ ¼ 0; x ≤ 2Δ; ð5Þ
ψðxÞ ¼ x − 2σ; x ≥ 2a; ð6Þ

where σ ¼ a −
R
a
Δ duωðuÞ can be interpreted as the effec-

tive size of a particle.

With Eqs. (4)–(6), the solution of Eq. (1) can be found as
follows. For x ≥ 2a, Eq. (1) simplifies to

∂
∂t p ¼ −ðx − 2σÞpþ 2

Z
∞

xþΔ
dyωðy − xÞpðy; tÞ: ð7Þ

Crucially, Eq. (7) admits an exact solution of the form

p0ðx; tÞ ¼ t2FðtÞe−ðx−2σÞt: ð8Þ

Substituting this ansatz in Eq. (7) and solving the resulting
ordinary differential equation (ODE) for FðtÞ with the
initial condition Fð0Þ ¼ 1 yields

FðtÞ ¼ exp

�
−2

Z
t

0

ds
1 −

R
a
Δ du ρðuÞe−us

s

�
; ð9Þ

where we introduce ρðxÞ ¼ ω0ðxÞ. We now distinguish the
two cases Δ > 0 and Δ ¼ 0.
The key observation is that for a finite excluded volume

Δ > 0, we directly obtain a solution in the regime 2a −
Δ ≤ x ≤ 2a (denoted by p1) even though ψ is nonlinear:
property (ii) of ωðxÞ enforces the constraint Θðy − x − ΔÞ
in the integral in Eq. (1), which thus only integrates over
p0; i.e., the master equation for 2a − Δ ≤ x ≤ 2a is

∂
∂t p1ðx; tÞ ¼ −ψðxÞp1ðx; tÞ þ 2

Z
∞

xþΔ
dyΩðx; yÞp0ðy; tÞ:

ð10Þ

This simple first-order ODE with inhomogeneity can be
directly integrated:

p1ðx; tÞ ¼ 2

Z
t

0

dse−ψðxÞðt−sÞ
Z

∞

xþΔ
dyΩðx; yÞp0ðy; tÞ: ð11Þ

Likewise, the solution in the range 2a − 2Δ ≤ x ≤ 2a − Δ
can be obtained by integration over p0 and p1, and so on.
Overall, we thus decompose the interval distribution as

pðx; tÞ ¼

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

p0ðx; tÞ x ≥ 2a

p1ðx; tÞ 2a − Δ ≤ x < 2a

..

.

pjðx; tÞ 2a − jΔ ≤ x < 2a − ðj − 1ÞΔ
..
.

pnðx; tÞ 2Δ ≤ x < 2a − ðn − 1ÞΔ

pnþ1ðx; tÞ Δ < x < 2Δ:

ð12Þ
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Because of the excluded volume, pðx; tÞ ¼ 0 for x ≤ Δ. We
introduce the shorthand notation ΘjðxÞ to separate the
different x ranges in Eq. (12) and write pðx; tÞ ¼Pnþ1

j¼0 ΘjðxÞpjðx; tÞ. The solutions p1;…; pnþ1 are thus
obtained by solving the corresponding ODE for each range
leading to

pjðx; tÞ ¼ 2

Z
t

0

ds e−ψðxÞðt−sÞ
Z

∞

xþΔ
dyΩðx; yÞ

×
Xj−1
i¼0

ΘiðyÞpiðy; sÞ; j ¼ 1;…; n; ð13Þ

and

pnþ1ðx; tÞ ¼ 2

Z
t

0

ds
Z

∞

xþΔ
dyΩðx; yÞ

Xn
i¼0

ΘiðyÞpiðy; sÞ;

ð14Þ
since ψðxÞ ¼ 0 for x ≤ 2Δ. Equations (8)–(14) represent
the exact analytical solution of Eq. (1) for finite-range
interactions and Δ > 0.
When Δ → 0, we can use a limiting procedure in

Eqs. (13) and (14) or use Eq. (8) in Eq. (1) and separate
the integration region. In both cases, the result is

∂
∂t p<ðx; tÞ ¼ −ψðxÞp<ðx; tÞ þ 2

Z
2a

x
dyΩðx; yÞp<ðy; tÞ

þ 2

Z
∞

2a
dyΩðx; yÞp0ðy; tÞ; ð15Þ

where p< is the interval distribution for the whole
range 0 ≤ x ≤ 2a. Using the Duhamel principle, Eq. (15)
can be solved by iteration leading to a series solution.
We define the compact linear operator Lfðx; tÞ ¼
2
R
t
0 ds e

−ψðxÞðt−sÞ R 2a
x dyΩðx; yÞfðy; tÞ and obtain the for-

mal solution

p<ðx; tÞ ¼
1

1 − L
hðx; tÞ

¼ hðx; tÞ þ Lhðx; tÞ þ LLhðx; tÞ þ � � � ; ð16Þ

hðx; tÞ ¼ 2

Z
t

0

ds e−ψðxÞðt−sÞ
Z

∞

2a
dyΩðx; yÞp0ðy; sÞ: ð17Þ

Convergence of this series needs to be established for a
given x, t range and Ω.
As an example, where these results can provide novel

analytical insight, we consider a model of nucleosome
packing on DNA. In Refs. [14,15] genome packaging in
eukaryotic cells has been modeled assuming an effective
“softness” of the nucleosomes due to a multitude of internal
states with different footprints on DNA [14,15]. The
effective interaction potential has been approximated from
in vivo data as [14]

VðxÞ ≈ ða − xÞκ − log½1þ ða − xÞð1 − e−κÞ�; ð18Þ

where a ¼ 167 base pairs (bp) is the maximal footprint size
and κ ¼ 0.15 the stiffness per bp (kBT ¼ 1). A numerical
investigation of the equilibrium kinetics of Eq. (18) exhibits
a universal interval distribution independent of the adsorp-
tion rate kþ at a specific time tc. The time tc is defined by
the condition ϕðtcÞ ¼ ϕR and denotes the onset of “cram-
ming,” where nucleosomes are increasingly squeezed into
gaps that are smaller than the maximal footprint size
[14,15]. The dynamics in the cramming regime can be
described as follows. In nucleosome packing, both adsorp-
tion (with rate kþ) and desorption (with rate k−) occur
whereby kþ ≫ k−. Thus, in a time regime ≪ 1=k−, the
equilibrium dynamics is well described by an irreversible
RSA process like Eq. (1) [34,35]. Here, the effect of the
interaction potential can be captured by the Boltzmann
factor [14,15],

Ωðx; yÞ ¼ kþ exp ½−VðxÞ − Vðy − xÞ�; ð19Þ

setting kBT ¼ 1, and the normalization constant is included
in kþ. Since tc has been observed to be ≪ 1=k−, the RSA
process applies in the cramming regime and explains
immediately the apparent universality of the interval dis-
tribution: different kþ lead to different tc values, but the
resulting pðx; tcÞ are all identical, since they are determined
at the same ϕ value. In fact, this observation shows that the
universality holds not only at cramming onset, but for any
fixed ϕ value in the regime ≪ 1=k−. It also highlights that
the curves ϕðtÞ for different kþ are all scaled versions of
each other up to times t ≈ 1=k−, which is indeed suggested
in the numerical results of Ref. [15]. Remarkably, with
ωðxÞ ¼ e−VðxÞ and Eqs. (8), (16), and (17) we obtain

pðx; tcÞ ¼
�
p0ðx; tcÞ x ≥ 2a

ð1þ LÞhðx; tcÞ 0 ≤ x < 2a;
ð20Þ

which shows excellent agreement with the numerically
obtained interval distribution at tc [15] despite the strong
nonlinear character of the interaction potential Eq. (18)
[see Fig. 1].
We now want to understand how dense packings on the

line can be generated by tuning the interaction potential V
assuming ωðxÞ ¼ e−VðxÞ as in Eq. (19). For simplicity, we
restrict the discussion to purely repulsive interactions such
that ωðxÞ is monotonically increasing with 0 ≤ ωðxÞ ≤ 1
for x ∈ ½Δ; a�. We then make two key observations. (a) For
σ ≥ 2Δ, the effective size is larger than the minimal
separation of two particles; thus the line will eventually
be fully covered by particles and ϕJ ¼ 1. We assume the
more interesting case 2Δ > σ in the following. (b) For
a > Δ, a potential leading to a maximum in ϕJ must exist.
We can conclude this surprising fact from the two limiting
forms of ω that satisfy the properties (i) and (ii) and

PHYSICAL REVIEW LETTERS 122, 130602 (2019)

130602-3



the repulsive nature [see Fig. 2(a)]. One limit is ωðxÞ ¼
Θðx − aÞ (leading to σ ¼ a), and the other limit is ωðxÞ ¼
Θðx − ΔÞ (leading to σ ¼ Δ). However, in both cases we
recover ϕJ ¼ ϕR, since ϕJ is invariant with respect to a
single size scale a orΔ on an infinite line. When a > Δ, we
have ϕJ > ϕR, so a potential leading to a maximum must
exist for a givena.What is the formof this optimal potential?
In order to elucidate this matter, we consider a one-

parameter family of potentials that can interpolate between
the two limiting forms of ωðxÞ [see Fig. 2(a)],

VðxÞ ¼
�
−μ logðx−Δa−ΔÞ Δ ≤ x ≤ a

0 x > a;
ð21Þ

where μ > 0. The resulting ϕJ increases monotonically for
larger μ [Fig. 2(c)]. Surprisingly, this suggests that the
maximally dense packing is reached when ωðxÞ becomes
infinitesimally close to the step function limit Θðx − aÞ.
One can show (see Sec. III of Supplemental Material [32])
that the interval distribution then converges to the sta-
tionary limit psðxÞ¼Θðx−aÞΘð2Δ−xÞp̃�ðx−aÞ, where

p̃�ðzÞ ¼ 2

Z
∞

0

dt t exp

�
−zt − 2

Z
t

0

ds
1 − e−as

s

�
; ð22Þ

and the corresponding maximal line coverage is

ϕopt ¼ ϕR þ
Z

a

2Δ−a
dz z p̃�ðzÞ: ð23Þ

As shown in Fig. 2(b), psðxÞ diverges at x ¼ σ ¼ a,
indicating a large number of particle configurations with
no empty space between neighbors. The optimal density
ϕopt increases monotonically as a function of a [see inset of
Fig. 2(c)]. Note that the limit μ → ∞ is singular, recovering

the Renyi density ϕR instead (see Sec. III of Supplemental
Material [32]). Equations (22) and (23) remain valid for any
potential for which ωðxÞ approaches Θðx − aÞ infinitesi-
mally closely, highlighting that these results are indepen-
dent of the specific form Eq. (21). The optimal packing can
be understood intuitively. In the μ ≫ 1 regime, the system
behaves initially like the Rényi car parking of hard
particles: since ωðxÞ is infinitesimally close to Θðx − aÞ,
all trial configurations with particle overlap are practically
rejected until no gaps x ≥ 2a remain. Subsequently, the
steep decay of ωðxÞ prevents that intervals x < 2a are filled
with larger than necessary overlaps. The optimal potential
thus induces a perfectly hierarchical filling, where all
intervals 2Δ < x < 2a are eventually filled, but extremely
slowly. In fact, with the previous results and the asymptotic
properties of ψ , we find that for μ ≫ 1 (see Sec. IV of
Supplement Material [32]),

ϕJ − ϕðtÞ ∼
Z

2a−ðn−1ÞΔ

2Δ
dx e−ψðxÞt ∼ t−ν; ð24Þ

where ν ¼ 1=ð2μþ 1Þ. Despite the extremely slow
approach to the jamming density, Eq. (23) can be verified
in a simulation by running the Rényi car parking RSAwith
length scale a and then considering all intervals x > 2Δ as
filled when evaluating ϕJ. This indeed yields excellent
agreement with the theory [see inset of Fig. 2(c)].

(a)

(c)

(b)

FIG. 2. (a) The two limiting forms of ωðxÞ: Θðx − ΔÞ and
Θðx − aÞ, together with interpolations from the potential Eq. (21).
(b) Plot of p̃�ðzÞ, Eq. (22), for a ¼ 1. (c) Plot of ϕJ resulting from
the potential Eq. (21) calculated from the analytical solution
Eqs. (8)–(14) (here a ¼ 1.4, Δ ¼ 1). Inset: Plot of ϕopt, Eq. (23),
together with simulation results (here 2Δ − a ¼ 1).

from Ref. [15]

FIG. 1. Comparison of the analytical result Eq. (20) and the
numerically obtained interval distribution at cramming onset tc
from simulations of the equilibrium dynamics for the nonlinear
potential Eq. (18) [15]. Since the condition ϕðtcÞ ¼ ϕR fixes the
timescale kþ, there is no free parameter in the theory. Inset: The
first three terms in the series solution Eq. (16), indicating
convergence after the first two terms.
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The iterative solution method can be applied to related
interacting particle models such as the continuum RSA of
polydisperse particles in 1d, whose general time-dependent
solution has been a long-standing open problem [18–24].
Crucially, this problem can be solved in full generality akin
to the interacting particle case for an arbitrary size
distribution ρðσÞ with support σ ∈ ½σ1; σ2� (see Sec. V of
Supplemental Material [32]). The solution shows in par-
ticular that the exponent of the asymptotic approach is
determined by the leading term in the asymptotic expansion
of ρðσÞ as σ → σ1. The widely used assumption that
polydispersity generally reduces the exponent by an addi-
tional degree of freedom from ν ¼ 1=d to ν ¼ 1=ðdþ 1Þ
[2,6,36,37], where d is the spatial dimension, is thus not
correct for d ¼ 1. A similar result should hold for the
RSA of polydisperse spheres in higher dimensions, where
the quantitative dependence on ρ has first been observed
empirically [38]. The size distribution ρðxÞ that leads to a
maximal line coverage is infinitesimally close to Θðσ − σ2Þ
and yields a stationary interval distribution and optimal
density that are governed by Eqs. (22) and (23) as in
the interacting particle case, where now a ¼ σ2 and Δ ¼
ðσ1 þ σ2Þ=2 (see Sec. V of Supplemental Material [32]).
The RSA of interacting particles corresponds to a

cooperative RSA problem, where adsorption rates depend
on the local environment of the particle with a given range
[2]. Cooperative RSA problems have long been studied on
discrete lattices, for which exact results are available forM-
mers (particles occupying M sites) with cooperativity of
range 1 [34,39,40], range M [41,42], and arbitrary finite
range R [43]. From such discrete models, the continuum
equivalent is obtained in the limit of M → ∞. However,
performing such a limit in the general case of M-mers with
general range-R cooperativity, which could be mapped onto
the continuum RSA of interacting particles, is nontrivial
and left for future work. Further applications of the exact
results in the context of nucleosome packing models would
be highly interesting. The empirically obtained potential
Eq. (18), e.g., might represent an optimal trade-off between
achieving a high coverage and a fast filling dynamics on
timescales relevant for biological function. To this end, not
only ϕJ but the dynamics of ϕðtÞ needs to be explored in
the space of possible potentials. In Ref. [44], cold atoms
that are excited to high-lying Rydberg states are shown to
fill up excitation levels akin to a classical deposition
process, where atoms interact through a highly nonlinear
potential with excluded volume [45]. The analytical sol-
ution obtained here could provide important deeper insight
into such cold atom excitations, which would be readily
realizable in experiments.
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