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Resource theories can be used to formalize the quantification and manipulation of resources in quantum
information processing such as entanglement, asymmetry and coherence of quantum states, and
incompatibility of quantum measurements. Given a certain state or measurement, one can ask whether
there is a task in which it performs better than any resourceless state or measurement. Using conic
programming, we prove that any general robustness measure (with respect to a convex set of free states or
measurements) can be seen as a quantifier of such outperformance in some discrimination task. We apply
the technique to various examples, e.g., joint measurability, positive operator valued measures simulable by
projective measurements, and state assemblages preparable with a given Schmidt number.
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Introduction.—In recent years it has become evident that
quantum mechanical devices can outperform classical ones
in tasks like computation, cryptography, or metrology. Still,
it is not entirely clear which quantum mechanical effects
are responsible for the quantum advantage, and several
candidates, such as quantum entanglement, Bell nonlocal-
ity, quantum contextuality, and quantum coherence have
been discussed [1–5]. Many phenomena play a role and one
cannot expect a single phenomenon to be responsible for
all applications. So, it is more precise to consider a given
quantum resource, such as a certain quantum state or
measurement, and ask: Is there a task in which this resource
outperforms all classical strategies? A general treatment of
this question leads to the notion of resource theories [6–10],
where a certain set of states and operations are free and then
one can ask for the usefulness of the nonfree states and
operations.
In this Letter we present a general method to find tasks in

which certain properties of quantum states and measure-
ments provide an advantage. We start by discussing the
incompatibility of measurements as a resource, and identify
a corresponding task in terms of a state discrimination
problem. Motivated by this, we recognize that this result is
not limited to quantum incompatibility, as it can be identified
as a manifestation of a much more general theory, namely,
the duality theory of conic programming [11].
Conic programming is a branch of convex optimization

that includes linear and semidefinite programming (SDP)
as special cases. The power of introducing this method in
our framework lies in the fact that, whereas examples such
as incompatibility of observables could be treated with
SDPs with specific linear constraints, conic programming

applies to more general structures. This leads to task-
oriented formulations for various measures of quantumness
in cases where the linear or semidefinite constraints are
harder to write down (e.g., coexistence) or even when the
constraints are not known (e.g., simulability and assemb-
lages related to certain Schmidt number states). As a
consequence, finding task-oriented characterizations for
nonclassical sets of measurements or assemblages is
possible in one go.
To demonstrate the general applicability of our approach,

we consider four different scenarios. First, in Ref. [12] it
was shown that incompatibility of measurements is neces-
sary in order to gain advantage from prior information in
state assemblage discrimination tasks. We show that also
the reverse implication holds, namely, that for any set of
incompatible measurements there exists an instance of state
assemblage discrimination in which prior information
provides an advantage.
Second, we discuss the outperformance of projective or

von Neumann measurements (PVMs) by generalized mea-
surements or positive operator valued measures (POVMs).
More precisely we show that for any POVM that is not
simulable by PVMs there exists a state discrimination task
in which the outperformance becomes evident.
Third, it was shown in Ref. [13] that all entangled states

provide an advantage in channel discrimination. This result
was refined in Ref. [14] where it was shown that higher
Schmidt number implies better performance in channel
discrimination tasks; see also Ref. [15]. Our approach
implies that preparation of state assemblages from states
with higher Schmidt number also leads to better perfor-
mance in tailored subchannel discrimination tasks. Such
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tasks for Schmidt number one, i.e., steering, have been
experimentally implemented [16]. Specifically, this
results in semi-device-independent Schmidt number
witnesses.
Fourth, we connect state robustnesses with state ensem-

ble robustnesses. This gives observable measures for state
resources that can be implemented using basic phase
estimation protocols as has been done experimentally in
the case of coherence [17]. In fact, such experimental
consequences are generic in our approach: The dual of a
conic program results in observable witnesses, making an
experimental verification of the resource character feasible.
Minimum-error state discrimination.—A fundamental

task in quantum information theory is that of minimum-
error state discrimination. Suppose we are given a quantum
state ϱa from some ensemble E ¼ fpa; ϱaga with prior
probabilities pa. Our task is to find a POVM M ¼ fMaga,
i.e., a set of positive operators summing up to identity, that
gives the best probability of guessing the index a correctly.
Here we interpret the outcomes a of the measurement as
our guesses. In other words, we are interested in maxi-
mizing the quantity pguessðEÞ ¼

P
apatr½ϱaMa� over all

measurements fMaga.
A typical instance of this problem is called state dis-

crimination with postmeasurement information [18,19]. The
ensemble E ¼ fpa; ϱaga∈I can be partitioned into nonempty
disjoint ensembles Ex ¼ fpa; ϱaga∈Ix , where⋃xIx ¼ I. The
label x is revealed after performing the measurementM, as is
the case in the BB84 protocol in quantum key distribution.
This additional information cannot decrease the probability
of guessing correctly. The success probability can be
increased even more by providing this information prior
to the measurement, since then one can tailor a separate
measurement for each label x individually. Hence, in
general, it holds that pguessðEÞ ≤ ppost

guessðEÞ ≤ pprior
guessðEÞ. It

was proven in Ref. [12] that ppost
guessðEÞ ¼ pprior

guessðEÞ if and
only if there exist compatible measurements that maximize
the success probabilities in these tasks.
Incompatibility provides an advantage in state

discrimination with prior information.—To illustrate our
main idea we start by showing that the connection found in
Ref. [12] can be refined in the sense that for every set of
incompatible measurements there exists a state discrimi-
nation task in which it performs better than any compatible
set. A measurement assemblage, i.e., a collection of
POVMs, M ¼ fMxgx ¼ fMajxga;x is called compatible
or jointly measurable (JM), if there exist probability
distributions pð·jx; λÞ and a joint POVM G ¼ fGλgλ such
that Majx ¼

P
λpðajx; λÞGλ. Otherwise, the collection is

called nonjointly measurable or incompatible. This defi-
nition has a clear operational interpretation. One can collect
the statistics of the POVM fGλgλ and obtain the statistics of
the fMxgx by classical postprocessing.

A natural quantifier of incompatibility is the so-called
incompatibility robustness (IR) [20]

IRðMajxÞ ¼ min
�

t ≥ 0

�
�
�
�
Majx þ tNajx

1þ t
¼ Oajx ∈ JM

�

;

ð1Þ

where the optimization is performed over all POVMs
fNajxga;x, see also Fig. 1. The incompatibility robustness
can be cast as the following SDP [20]

1þ IR ¼ min
G̃λ

X

λ

tr½G̃λ�
d

s:t:∶
X

λ

Dðajx; λÞG̃λ ≥ Majx for all a; x

X

λ

G̃λ ¼
1d
d

X

λ

tr½G̃λ�; G̃λ ≥ 0: ð2Þ

The dimension of the space is d,Dðajx; λÞ are deterministic
postprocessings [21], G̃λ ¼ ð1þ tÞGλ and Gλ is a joint
POVM of fOajxga;x. As strong duality holds [20], the
solutions of the primal and dual problems coincide.
Computing the dual and picking an optimal choice for
the dual variables fYajxga;x (see Supplemental Material
[22]) one gets

X

a;x

tr½MajxYajx� ¼ 1þ IR: ð3Þ

Denoting a state ensemble as E ¼ fpðxÞpðajxÞ; ϱajxg,
where pðxÞ is the probability of being in the subensemble
x and pðajxÞ denotes the probability of the label a within
the subensemble x, allows us to upper bound the success
probability for the set fMajxga;x of POVMs as

psuccðM; EÞ ¼
X

a;x

pða; xÞtr½Majxϱajx�

≤ ð1þ IRÞmax
JM

psuccðfOajxg; EÞ: ð4Þ

FIG. 1. Geometrical interpretation of the incompatibility ro-
bustness. Given a set of POVMs fMajxg we search for another set
of measurements fNajxg such that the smallest mixture results in
a compatible set of measurements fOajxg.
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The maximization is taken over jointly measurable sets of
POVMs fOajxga;x. For the inequality we have used Eq. (1).
Rewriting this gives

psuccðM; EÞ
maxJMpsuccðfOajxg; EÞ

≤ 1þ IR: ð5Þ

The dual variables in Eq. (3) are positive semidefinite
matrices and one can obtain Yajx=tr½Y� ¼ pðxÞpðajxÞϱajx,
where tr½Y� ¼ P

a;xtr½Yajx�. Hence, the left-hand side of
Eq. (3) is, up to a factor, the success probability in a state
discrimination task with prior information. Inserting the
optimal Yajx into Eq. (5) and noting that for jointly
measurable sets the denominator in Eq. (5) is less than
or equal to one we arrive at the following observation.
Observation 1: For any set of incompatible POVMs

fMajxg there exists a state discrimination task with prior
information such that

sup
E

psuccðfMajxg; EÞ
maxJMpsuccðfOajxg; EÞ

¼ 1þ IRðMajxÞ: ð6Þ

The above Observation can be seen as a semi-device-
independent statement about measurement incompatibility.
Namely, if we can trust the preparation device, i.e., trust E,
then we can certify the incompatibility of measurements
without assuming anything about their specific form.
In the following sections we show that statements similar

to Observation 1 can be made for any convex and compact
subset of POVMs using conic programming.
Conic programming.—A subset C of a vector space V is

called a convex cone if it is convex and for any x ∈ C one
has ax ∈ C for all a ≥ 0. The dual cone C� is defined as
C� ¼fyjhxjyi≥0 ∀ x∈Cg. Consider a cone program [11]

max
X

tr½AX�;
s:t:∶ Λ½X� ≤ B; X ∈ C; ð7Þ

where Λ is a linear operator and ≥ denotes the partial order
in the positive semidefinite cone of operators. Using
Lagrange duality the dual cone program reads

min
Y

tr½BY�;
s:t:∶ Λ†½Y� − A ∈ C�; Y ≥ 0: ð8Þ

As in the case of SDPs, strong duality holds if and only if
Slater’s conditions are fulfilled and the primal problem is
finite [11]. In our scenarios Slater’s conditions reduce
to B − Λ½X� > 0.
Generic robustness measures and state discrimination.—

Label the set of d number of inputs and outputs by S. In our
discussion a free set F of POVMs is a convex and closed

subset of S. For a set of POVMs fMajxga;x in S we can
define a generalized robustness with respect to F as

RFðMajxÞ¼min
�

t≥0

�
�
�
�
Majxþ tNajx

1þ t
¼Oajx∈F

�

: ð9Þ

A crucial difference to incompatibility robustness is that F
is a generic convex and compact subset of S, and does not
need to be characterizable by an SDP. The generalized
robustness can be cast as the following optimization
problem

min
t

1þ t;

s:t:∶
Majx þ tNajx

1þ t
¼ Oajx ∈ F; fNajxg ∈ S; t ≥ 0:

ð10Þ

Defining new variables Õajx ¼ ð1þ tÞOajx allows writing
the above problem as a cone program

min
Õajx

1

jxj
X

a;x

tr½Õajx�
d

;

s:t:∶ Õajx ≥ Majx; Õajx ∈ CF; ð11Þ

where jxj is the number of inputs and CF is the conic hull
of F. The detailed derivation can be found in the
Supplemental Material [22]. The dual program reads

max
Yajx

X

a;x

tr½MajxYajx�;

s:t:∶ Y ≥ 0; tr½YT� ≤ 1∀ T ∈ F; ð12Þ

where the dual variable Y ¼ diag½Yajx� is block diagonal.
Note that any point in CF with full rank either fulfills

Slater’s conditions or it can be scaled up, i.e., multiplied
with a sufficiently large positive number, to a point that
does. In our examples all cones have a full rank point.
Hence, from here on our results have the implicit
assumption that the set F is such that the related cone
programs fulfill Slater’s conditions.
Similar reasoning as before results in our main theorem.
Theorem 1: Let F be a convex and compact set of

measurement assemblages. For any collection of POVMs
fMajxga;x that is not in F there exists an instance of state
discrimination, where fMajxga;x strictly outperforms all
sets of POVMs in F. The outperformance is exactly
quantified by the generalized robustness with respect to
F, i.e.,

sup
E

psuccðfMajxg; EÞ
maxFpsuccðfOajxg; EÞ

¼ 1þRFðMajxÞ: ð13Þ
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Similarly to the case of incompatibility robustness, the
above result can be seen as a semi-device-independent
statement about the properties of the measurements.
As our result applies to any convex and compact set of

free POVMs, the question remains to characterize some
interesting sets. To give an example, one could go along
the lines of joint measurability and take the slightly more
general set of coexistent POVMs [24]. Note that coex-
istence is equivalent to the joint measurability of all
binarizations and, hence, it can be formulated as an SDP.
However, the cone formulation allows one to prove the
connection to state discrimination without specifying this
SDP. To fulfill Slater’s conditions one can take uniform
POVMs and scale them up to operators that are larger
than identity.
To give an example of a situation where an SDP

formulation is not known we consider the simulability of
POVMs. Recall that state discrmination provides a cel-
ebrated example of a task in which POVMs can perform
better than PVMs [25,26]. This statement can be hardened
by considering the subset of POVMs that is simulable
with all PVMs as the free set F in Theorem 1. This set is
defined as those POVMs that can be written in the form
Ma ¼

P
jpðjÞ

P
ipðaji; jÞPijj, where pð·Þ and pð·ji; jÞ are

probability distributions, and fPijjg exhaust the set of
projective measurements. In Ref. [27] this set was shown to
coincide with the convex hull of PVMs and in Ref. [28] it
was shown that one can reach all measurements by
allowing postselection. Note that for a fixed set of simu-
lators, e.g., all PVMs or all binary POVMs, the set is
convex. Concerning compactness, one can argue that if a
simulable set were not compact, then one could close it as
this set can approximate arbitrarily well its own closure. It
is worth noting that simulability can also be defined for
measurement assemblages [29] and that our formalism
applies to this scenario given that the free set is convex and
compact, which can be achieved by taking the convex hull
and the closure if necessary.
Robustness of state assemblages and subchannel

discrimination.—In Ref. [15] it was shown that for any
steerable state assemblage there exists a one-way LOCC
assisted subchannel discrimination task in which the
assemblage outperforms all unsteerable ones. Here we
show that such behavior is not specific to the case of
steering, but it is rather a generic feature of convex and
closed sets of assemblages.
In a subchannel discrimination task one aims at dis-

criminating between different elements of an instrument
Λ ¼ fΛaga, i.e., a collection of completely positive
maps that sums up to a trace preserving map, with some
POVM N. For a given quantum state ϱ the success
probability reads

psuccðϱ;Λ;NÞ ¼
X

a

tr½ΛaðϱÞNa�: ð14Þ

For a state assemblage fϱajxga;x we define similarly
the success probability as psuccðfϱajxg;Λ;NÞ ¼P

a;x tr½ϱajxΛ†
aðNxÞ�. This can be seen as the probability

of correctly guessing the subchannel with the assistance of
one-way LOCC. Namely, Bob performs a measurement N,
communicates the outcome to Alice, she then performs the
corresponding measurement and reports the outcome a as
the guess. Note that we assume Alice’s measurements and
the shared state to be such that they prepare the assem-
blage fϱajxga;x.
One can define generalized robustnesses for state

assemblages and formulate them through conic program-
ming as in the case of measurement assamblages. The only
difference is the normalization and, hence, the interpreta-
tion of the dual program. For measurement assemblages the
dual can be identified as a state discrimination problem and
for state assemblages the dual corresponds to a subchannel
discrimination task (see Supplemental Material [22]). We
arrive at the following Theorem.
Theorem 2: Let F be a convex and compact set of state

assemblages. For any state assemblage fϱajxga;x that is
not in F there exists an instance of (one-way LOCC
assisted) subchannel discrimination, where fϱajxga;x
strictly outperforms all assemblages in F. The outperform-
ance is exactly quantified by the generalized robustness
with respect to F, i.e.,

sup
Λ;N

psuccðfϱajxg;Λ;NÞ
maxFpsuccðfσajxg;Λ;NÞ

¼ 1þRFðϱajxÞ: ð15Þ

To give a physically motivated example of the free set F,
we consider assemblages that can be prepared using states
with Schmidt number n or smaller. As in the case of
measurement simulability, an SDP formulation for such
scenario is not known. For the proof of convexity
and compactness of these free sets, we refer to the
Supplemental Material [22]. Slater’s conditions are fulfilled
as the cones include a full rank point (e.g., the uniform
assemblage). It is worth mentioning that the inclusion of the
free set for the case of Schmidt number n is proper to that of
Schmidt number nþ 1 [30]. This example is in the spirit of
Ref. [14], where it was shown that higher Schmidt number
provides an advantage in channel discrimination tasks.
Moreover, the example refines the characterization of
steerable assemblages given in Ref. [15], hence, leading
to a semi-device-independent approach to Schmidt number
verification.
State ensembles.—The connection between robustness

and discrimination in the case of state ensembles follows
from the discussion on state assemblages by setting x ¼ 1.
This corresponds to the case in Eq. (14). To give a
physically motivated example, we consider ensembles that
are created through a given instrument Λ.
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To make a connection to the robustness of a given state
denote RðϱÞ (may it be, e.g., entanglement, coherence,
asymmetry, or coherence number robustness), we note that
when operating only within the set ffΛaðϱÞgajϱ ∈ SðHÞg
of ensembles [here SðHÞ denotes the set of positive
unit trace operators], we can define the robustness of
an ensemble fϱaga as RðϱaÞ ¼ minft ≥ 0jϱa þ tτa ¼
ð1þ tÞσa ∈ CFg, where F is the set of ensembles prepar-
able with the given instrument and resourceless states, and
fτaga is any ensemble preparable with the given instru-
ment. The techniques presented in the previous section give
a subchannel discrimination problem as the dual of the
robustness, with the dual variables being POVMs.
To fulfill Slater’s conditions we need a full rank point in

F. Typical free sets include the maximally mixed state or
the maximally mixed ensemble and, hence, the set F
contains a full rank point.
The ensemble robustness is always less than or equal to

the state robustness as one can input an optimal solution
of the state robustness to the instrument. We have
psuccðNa;ϱaÞ≤½1þRðϱÞ�maxFpsuccðNa;σaÞ, where fNaga
is a POVM. Whenever the instrument is a bijection from
the set of states to the set of ensembles, e.g., in phase
discrimination, the ensemble robustness coincides with the
corresponding state robustness. Therefore, maximizing
over all instruments and POVMs saturates the bound
(see also Theorem 2).
We have recovered the result of Ref. [31] stating that

robustnesses of state resources are connected to subchannel
discrimination. In contrast to the former result in which a
witness was split into an instrument and a POVM, our
construction can use, e.g., any phase estimation protocol as
the instrument and the witness is simply a POVM. It is
worth mentioning that phase discrimination has been used
to measure the robustness of coherence [17] in a recent
experiment.
Conclusions.—In this work we have shown how various

optimal and nonoptimal witnesses for the classical to
quantum border can be written in an observable form
using conic programming. These witnesses arise from
generalized robustnesses and as such the results open up
the possibility to define observable quantifiers for the
quantum properties that are within the reach of current
experiments [16,17].
In comparison to earlier efforts in this direction, our

techniques apply to any properties of measurement and
state assemblages that form a convex and compact subset,
whereas former techniques have dealt with single proper-
ties such as quantum steering [15] or with sets of properties
related to single states [31]. This allowed us not only to
answer open questions [14] and to push forward earlier
works [12], but also to develop novel methods in the
field of semi-device-independent quantum information
processing and to attack the question whether POVMs
provide an advantage over PVMs in a quantitative way.

For future research it will be interesting to identify other
properties than the ones discussed here as the free set. Also,
the question of generalizing the results to the level of
quantum channels and instrument assemblages might
provide new insights to the properties of these notions,
e.g., in the resource theory of quantum memories [32].
Finally, the operations that do not generate resources from
the free set cannot increase the robustness measure. Thus, it
would be interesting to characterize the physical interpre-
tation of these operations and the properties of the robust-
ness measure under time evolutions or classical pre- and
postprocessing.
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Note added.—Recently, we became aware of some related
works. In Ref. [33] Carmeli et al. show, using a different
method, that incompatibility can always be detected by a
state discrimination task with partial intermediate informa-
tion. In particular they prove that any linear incompatibility
witness can be implemented by some state discrimination
task. In Ref. [34] Skrzypczyk et al. also prove the
quantitative connection between the incompatibility robust-
ness and the outperformance of compatible measurements
by incompatible ones in tailored state discrimination tasks.
Moreover, they show the completeness of state discrimi-
nation games as resource monotones, thus completely
characterizing the partial order in a resource theoretical
sense. Furthermore we became aware of two other related
works, one by Oszmaniec and Biswas [35], and another one
by Takagi and Regula [36].
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