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Some quantum measurements cannot be performed simultaneously; i.e., they are incompatible. Here we
show that every set of incompatible measurements provides an advantage over compatible ones in a
suitably chosen quantum state discrimination task. This is proven by showing that the robustness of
incompatibility, a quantifier of how much noise a set of measurements tolerates before becoming
compatible, has an operational interpretation as the advantage in an optimally chosen discrimination task.
We also show that if we take a resource-theory perspective of measurement incompatibility, then the
guessing probability in discrimination tasks of this type forms a complete set of monotones that completely
characterize the partial order in the resource theory. Finally, we make use of previously known relations
between measurement incompatibility and Einstein-Podolsky-Rosen steering to also relate the latter with

quantum state discrimination.
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Introduction.—In quantum mechanics, observables
described by noncommuting operators satisfy an uncer-
tainty relation, which implies that we cannot acquire
precise information about them simultaneously [1]. First
thought to be a limitation, recent advances in quantum
information theory have demonstrated that this feature is
behind several applications, such as the security of quan-
tum key distribution [2] and nonlocality based (or device-
independent) applications [3].

Commutation is well defined for sharp (von Neumanm)
measurements. However, a more refined notion of meas-
urement incompatibility is needed for general measure-
ments described by positive-operator-value measures
(POVMs) [4]. This is captured by the idea of joint
measurability [5]. Suppose a set of measurements {M,},
is labeled by x = 1, ..., m, each described by measurement
operators My, (M, >0, >  M,, =1V a,x), where
a=1,...,0 labels each of the measurement outcomes.
This set is said to be jointly measurable (or compatible) if
there exists a “parent” measurement G with measurement
operators G,, and conditional probability distributions
p(alx, 1), such that

Ma|x = ZP(‘I
A

Otherwise the set is said to be incompatible. This definition
can be interpreted as follows: if Eq. (1) holds, all mea-
surements M, can be performed jointly, by the implemen-
tation of the single measurement G and a probabilistic
classical postprocessing defined by the weights p(a|x, ).

x, )G, V a,x. (1)
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A number of previous results have sought to understand
the power of incompatible measurements from the per-
spective of nonlocality. For example, it was shown in
Ref. [6] that every pair of dichotomic incompatible mea-
surements can be used to violate the CHSH Bell inequality.
In Refs. [7,8] it was further shown that every set of
incompatible measurements leads to a weaker form of
nonlocality, namely, Einstein-Podolsky-Rosen steering [9].
However, more recently it was shown in Refs. [10,11] that
there exist sets of incompatible measurements that will
never lead to violations of any Bell inequality, showing that
such a general result does not hold for the strongest form of
nonlocality.

In this Letter we wish to understand the power of
incompatible measurements more directly. We do so, by
finding an operational interpretation of measurement
incompatibility in terms of quantum state discrimination:
we show that a set of measurements is incompatible if and
only if they provide an advantage over compatible ones in a
quantum state discrimination (QSD) task with multiple
ensembles of states. Moreover, we also show that the
advantage of an optimally chosen QSD task is exactly
quantified by the robustness of incompatibility of the set, a
previously proposed quantifier of measurement incompat-
ibility [12]. This result fits within a number of results
recently obtained that have linked robustness-based quan-
tifiers with advantages in suitably chosen discrimination
games [13—17]. It can also be seen as an analogue for the
measurement incompatibility of Ref. [18], which showed
that a state is entangled if and only if it provides an
advantage in a channel discrimination task.

© 2019 American Physical Society
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Incompatibility and advantage in quantum state
discrimination.—We consider the following two-party
QSD task [19-21]: Bob can prepare different ensembles
{&€,}, 0 = 1,...,n)of quantumstates £, = {py,, ¢(b[y)}5,
forb =1, ..., p. Ateach round of the protocol, Bob chooses
one of the ensembles y with probability ¢(y) and sends Alice
his choice y, and the state prepared p;|,, which occurs with
probability ¢(b]y). Upon receiving y and p,,, Alice’s goal is
to identify which state she was sent, i.e., to correctly
identify b.

We will consider playing this game in two different
scenarios. In the first scenario, Alice has access to a fixed
set of incompatible measurements {M, }, in order to play.
We consider the most general probabilistic strategies
assuming that the only way Alice can interact with the
system is through her fixed measuring device. In particular,
we allow any strategy consisting of the following [22]:
After receiving the state and the value of y, Alice makes use
of a random variable u to perform the measurement M,,
with probability p(x|y, u). After receiving outcome a she
makes a guess of the value of b, according to p(gla, y, u).
Optimizing over all strategies, we can quantify how well
Alice does in this game by evaluating the average prob-
ability of correctly identifying b, i.e.,

= max Z )p(x

byaxgu
X tr[py M,

Py({&,}, {M.}) )

all P (9@, ¥, 1)8g.p, (2)

where the maximization 1s

S={pu), p(xly.u), p

q(b.y) = q(y)q(bly).
We will contrast this to a scenario where in any given run

of the game Alice can only perform a single measurement
(although we will allow once again the possibility of using
randomness to mix over different fixed measurements in
different runs of the game). In particular, we consider
measurements G, = {G,,},, and allow for the most
general strategy using any such measurements. Crucially
now, since Alice can only perform a single measurement,
the side information of y can only be used to implement a
classical postprocessing of this measurement. The net effect
is equivalent to Alice only being able to perform a set of
compatible measurements, those achieved by the parent
measurements G,. In this case the success probability is
given by

over  strategies
(gla,y,u)}, and we have written

PS({E,}) = max Z (b,y)p

byavg

X trLOh\y a\u]p(gla’ y’l/)ag,b’ (3)

where the maximization is over all strategies 7 =
{r().G,.p(gla.y.v)}.

We are primarily interested in the advantage that is
offered by a set of incompatible measurements {M, }, in
any such QSD game. In particular, we are interested in the
biggest relative increase in guessing probability that can be
obtained by the set of measurements {M, }, compared to
having access to only single measurements, among all
possible ensembles, i.e.,

Py({&,}, {M.})
max ———=—————.
ey Pe({&})
The main result of this Letter is to show that this quantity

is completely characterized by the robustness of incom-
patibility (ROI) of the measurements /z({M,}) as

CARTAY
ey Pi({&))

(4)

L+ Ir({M,}) = (5)

The robustness of incompability Iz ({M, }) is defined as the
minimal amount of “noise” that needs to be added to the set
of measurements {M, }, before they become compatible
[12]. Here, by noise, we mean that we mix the set of
measurements with another, arbitrary, set of measurements
{N,},, (of the same size, and with the same number of

outcomes), in order to make the mixture compatible.
Formally,
Ie({M.}) = min 7
M + rNajs
s.t 7 Zp alx, )
a\x>0 ZNa\x:‘“y
a
plale.2)20. Y pla
a
G20, Y6, =1 (6)
2

where the minimization is over r, {N,}  (where N, =
{Na‘x}a), G ={G,}, and {p(a|x,A)},, > and all con-
straints are understood to hold for all values of a, x, or 4, as
appropriate.

The ROI has a number of desirable properties: (i) It is
faithful: 7p({M,}) = 0 if and only if the set of measure-
ments {M, }, is incompatible; (2) It is convex: If the set of
measurements {M, } . is a convex combination of two other
sets of measurements, i.e., for all x, M, = pM)(Cl)—f—
(1- p)Mf), for some p >0, and for valid sets of
measurements {M }x and {M }X, then

Ie({M,}) < pIe(IMY) + (1= p)I((MP}); (7)

(iii) It is nonincreasing under postprocessing of the mea-
surements. That is, if we simulate a new set of measurements
{M}}, using {M,},, such that [23]
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)p(

b\\ ZP

a.x.p

’ )Ma\x’ (8)

where p(u), p(x|y,u), and p(b|a,y, u) are arbitrary sets of
probability distributions, then

Ir({M}) < Tr({M}). ©)

Because of Eq. (5), the properties (i)—(iii) are also satisfied
by the advantage (4). In particular, due to (i), a set of
measurements {M, }, provides an advantage over compat-
ible measurements if and only if 7z ({M,}) > 0.

Another interesting consequence of Eq. (5) is that it gives
an efficient way of computing the advantage (4). This is
because the ROI can be shown to be expressed explicitly as
the following semi-definite program (SDP):

I+ Ip({M,}) = min s
5.{Ga}

s.t. ZDa(a|x)G >M

G, >0, (10)

where a = aa, - - - a, is a string, which can be thought of
as a list of “results,” one for each measurement, D, (a|x) =
04,4, are deterministic probability distributions, whereby
a = a, with certainty, and G = {G,}, is a supernormalized
parent POVM. The derivation of this SDP formulation can
be found in the Supplemental Material [24].

Let us now sketch the proof of our main result (we leave
the full proof for the Supplemental Material [24]). Consider

that the solution of Eq. (6) is attained by Nalx, G7, and
p*(alx, A), which means that
a\x + IR({M } alx

d Zp (11)

T+ I({M,})

Since Ig({M,}) > 0 and N7, >0, we have that

[+ (MDD _p*(alx. )G} 2 My, Y a,x,
A

Multiplying both sides of this expression by py,, the

probabilities appearing in the QSD game, taking the trace
and applying the correct maximizations, we end up proving
that

Py({&)}, {My})
Pg({€,})
This expression is interesting by itself: it states that the ROI

of a set of measurements provides an upper bound on the
advantage that set provides in any QSD game (of the type

1+ 1p({M,}) > (12)

considered here), defined by the ensembles {£,},. It also
demonstrates that the ROI can readily be estimated exper-
imentally. Indeed, the right-hand side can be experimen-
tally estimated by carrying out a QSD game, and every such
experiment places a lower bound on the ROL

The second part of the proof consists in explicitly
showing that for any set {M,}, there exists a choice
{&}}, saturating the bound (12). Such a collection of
ensembles can be constructed by using the duality theory of
semidefinite programming [26]. In particular, in the
Supplemental Material [24] we show that an equivalent
formulation of the ROI (the dual formulation) is

1+ 1x({M,}) = max tr)y w,M,,
(M) = mas ) iy

[P, ¢
st. X > Za)aXDa(a X)
a,x

W 20, rX=1. (13)
Assuming that the maximum is attained by {®}, },.. we can
interpret these as unnormalized quantum states, which can
be appropriately normalized, and from which we can then
define a game through {€}},. We show in the Supplemental
Material [24] that the advantage that {M,}, provide in
playing this game is precisely 1 + Ix({M,}), which com-
pletes the proof.

To summarize, the above shows that the ROI, which was
introduced as a purely geometrical quantifier of incompat-
ibility, in fact has an operational interpretation as the
advantage that a set of measurements provides in an
optimally chosen QSD game. Moreover, since the ROI
is faithful [property (i) above], every set of incompatible
measurements gives an advantage in at least one QSD task,
and thus this task captures the utility of incompatible
measurements.

Resource theory of incompatibility.—We now turn to the
next result of this Letter, and consider a resource theory of
measurement incompatibility. We will see that this allows
us to connect the notion of simulability of one set of
measurements by another one, as given in Eq. (8), with the
success probability of these sets in any QSD games
considered here.

In any resource theoretic setting, there are 3 main
ingredients [27]: (i) a set of free or resourceless objects,
(ii) a set of expensive or resourceful objects, and (iii) a set
of allowed transformations between objects, which should
not be able to create resourceful objects from free objects.
In the present setting, a resource theory of incompatible
measurements can easily be formalized as (i) the free
objects are the set of all compatible measurements, (ii) the
resourceful objects are the set of all incompatible mea-
surements, and (iii) the set of allowed transformations
consist of all simulations [23]; i.e., we think of the
simulation protocol of Eq. (8) as “transforming” the set
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of measurements {M, }, into the set {Mj},. From proper-
ties (i) and (iii) of the ROI, we see that any set of compatible
measurements cannot be transformed into a set of incom-
patible ones by measurement simulation, and hence this is a
consistent set of allowed transformations.

Within any resource theory, there is a natural partial
order that arises between the objects of the theory: if one
object can be transformed into another, then it is “before” it
in the partial order. A basic question in any resource theory
is then to understand the partial order—i.e., to find
necessary and sufficient conditions that characterize
whether one object can be transformed into another or
not. Intuitively, objects can only be transformed into other
objects that are not more resourceful than themselves, i.e.,
generalizing the idea that the allowed transformations not
only cannot create resources from nothing, but cannot
increase resources.

Any function of an object that cannot increase under an
allowed transformation is known as a resource monotone,
and acts as a witness that one object cannot be transformed
into another object. In the present setting, property (iii) of
the ROI shows that it is a monotone for the resource theory
of incompatibility. It is, however, only a single monotone,
and Ix({M,}) > Ix({M,}) does not in general imply that
{M,}, can simulate {M;}‘

In the Supplemental Material [24], inspired by the
connection between the ROI and QSD, we prove that
Eq. (8) holds, which we will denote simply by
{M,}>{M;}, if and only if {M,} outperforms {M;} in
every single QSD game of the type considered above, i.e.,

Py({&,} ML) 2 Py ({E, 1AMy }) v {€,},
={M,}-{M;}. (14)

Notice that the backward implication (<) is natural: if
{M,} can simulate {M}, then it is obviously contradictory
that there is a game where {M}} can outperform {M,}.
Interestingly, the forward implication (=) holds, which
proves that the QSD games studied here constitutes a
complete set of operational monotones that determine
if a set of measurements can simulate another. This, in
particular, indicates that they capture the resource of
incompatibility.

EPR steering and entanglement-based QSD.—Let us
finally describe a connection between the present results
and the notion of Einstein-Podolsky-Rosen (EPR) steering
[9]. In the EPR steering scenario Alice and Bob share a
bipartite quantum state p,p, onto which Alice applies
measurements M,, leaving Bob’s state in the (unnormal-
ized) postmeasurement states 6, = tra[(M,x ® 1)pap].
The set of states {0}, ,—referred to as an assemblage
[28]—is said to demonstrate EPR steering if they do not
admit a local-hidden-state (LHS) decomposition of the type
Oax = >_yp(alx,A)o;, where p(alx,1) are conditional

probability distributions and ¢; (unnormalized) quantum
states [9]. Similarly to the case of incompatibility, the
robustness of steerability Sg({c,.}) of {o,},, can be
defined as the minimum amount of noise that has to be
mixed with each state o, from the assemblage, such that it
admits a LHS decomposition [29]. It is straightforward to
see that if {M,}, are a compatible set of measurements,
then no matter which state p,p is used in a steering
experiment, all resulting assemblages {o,,},, have a
LHS decomposition. In the other direction, it also turns
out that every set of incompatible measurements has the
potential of generating steering [7,8]. That is, for every set
of incompatible measurements there exists bipartite states
that demonstrate steering if Alice uses them.

In what follows we make use of the connection between
measurement incompatibility and EPR steering to also
connect the latter with QSD and to show that the advantage
in the QSD game here can be estimated in the so-called
one-sided device-independent (1SDI) paradigm [30] where
the set of measurements {M, } are treated as a black box,
such that we do not know the specific measurements made,
or the dimension of system they act upon.

In order to accommodate the steering scenario let us
describe an entanglement-based variation of the QSD
scenario discussed before. Suppose that Bob tells Alice
that he is going to measure his part of p,p with the
measurement M, = {M,, }, (such a measurement can be
thought of as performing remote state preparation [31] of
the states p;, of Alice). Once again, Alice’s goal is to make
a measurement on her system in order to best guess Bob’s
outcome b (which is equivalent to guessing which state she
will receive).

It was shown in Ref. [32] that a 1SDI lower bound can be
placed on the ROI,

Sk{oax}) < Tr({My}), (15)

where {6, },., is an assemblage created by performing the
measurements {M, }, on any state p,p, and S ({o.}) is
the consistent steering robustness, given by

Sf?({o-abc}) = mins

Oa|x + SWy|x
£ ——= ,A)o;,
S s zﬂ:p(a x, )0,
walx Z Oy 6,1 Z 07
plalx,2) >0, Zp(a|x,/1) =1,

zwabc = Zaa\x = zo-ﬂ? (16)
a a A

which can be seen as a modification of the steering
robustness, with the additional constraint that the noise
must have the same reduced state as the input assemblage
[32]. Moreover, when p,p is a pure entangled state (of full
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Schmidt-rank), then S% ({4, }) =1z ({M,}); i.e., the bound
is in fact tight.

This means that 1 + S% ({6, }) provides a 1SDI lower
bound on the best advantage that Alice has in guessing b if
she measures a set of incompatible measurements instead
of a compatible one, and that if Alice and Bob share a pure
entangled state, that this bound is in fact tight.

Conclusions.—In this Letter we have shown that meas-
urement incompatibility, one of the most fundamental
features of quantum mechanics, is intrinsically connected
to the task of discriminating quantum states from collec-
tions of ensembles. Our results thus provide an operational
interpretation of measurement incompatibility. Moreover, it
shows that the robustness of incompatibility of a set of
measurements is directly related to their usefulness for a
natural quantum information game. Finally, we considered
a resource theory of measurement incompatibility, and
showed that the very same game is intimately related to
the simulability of one set of measurements by another,
providing (an infinite number of) criteria—often referred to
as monotones—that collectively constitute necessary and
sufficient conditions that must be met for one set of
measurements to simulate another. This is similar to a
number of other resource theories, where guessing prob-
abilities in all discrimination games of a given type have
also been shown to constitute complete criteria for trans-
forming among objects in the theory [17,33,34].

There are a number of natural questions and extensions
that we leave for future work. For example, it is interesting
to consider partial notions of incompatibility (i.e., sets of
measurements which are pairwise compatible, but not
compatible as a complete set), and to ask whether there
exist QSD games which characterize the usefulness of such
sets. One can also consider generalizations of incompati-
bility in the other direction, where multiple parent mea-
surements are allowed, and ask similar questions.
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Note added.—Recently, we became aware of related Letters
[35,36]. In both works the authors also prove that all sets of
incompatible measurements lead to an advantage in state
discrimination (although in Ref. [35] without making a
quantitative connection to the ROI). Reference [36] uses
conic programming to prove more generally that robust-
ness-based measures can be seen as quantifiers of perfor-
mance in some discrimination tasks. Only our work shows
that performance in all discrimination tasks constitutes
necessary and sufficient conditions for measurement
simulation.
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