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Many complex generative systems use languages to create structured objects. We consider a model of
random languages, defined by weighted context-free grammars. As the distribution of grammar weights
broadens, a transition is found from a random phase, in which sentences are indistinguishable from noise,
to an organized phase in which nontrivial information is carried. This marks the emergence of deep
structure in the language, and can be understood by a competition between energy and entropy.
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It is a remarkable fact that structures of the most astound-
ing complexity can be encoded into sequences of digits from
a finite alphabet. Indeed, the complexity of life is written in
the genetic code, with an alphabet fA; T; C;Gg, proteins are
coded fromstrings of 20 amino acids, andhuman-written text
is composed in small, fixed alphabets. This “infinite use of
finite means” [1] was formalized by Post and Chomsky with
the notion of generative grammar [2,3], and has been
elaborated upon since, both by linguists and computer
scientists [4]. A generative grammar consists of an alphabet
of hidden symbols, an alphabet of observable symbols, and a
set of rules, which allow certain combinations of symbols to
be replaced by others. From an initial start symbol S, one
progressively applies the rules until only observable symbols
remain; any sentence produced this way is said to be
“grammatical,” and the set of all such sentences is called
the language of the grammar. The sequence of rule appli-
cations is called a derivation. For example, the grammar
fS → SS; S → ðSÞ; S → ðÞg has a single hidden symbol
S and two observable symbols, (and), and produces
the infinite set of all strings of well-formed parentheses.
A simple derivation in this grammar is S → SS → ðSÞS →
ððÞÞS → ððÞÞðÞ. Besides their original use in linguistics,
where the observable symbols are typically taken to be
words, and grammars produce sentences [Fig. 1(a)] [3,5],
generative grammars have found applications in manifold
domains: in the secondary structure of ribonucleic acid
(RNA) [Fig. 1(b)] [6,7], in compiler design [4], in self-
assembly [8], in protein sequence analysis [9], and in
quasicrystals [10], to name a few.
The complexity of a language is limited by conditions

imposed on its grammar, as described by the Chomsky
hierarchy, which, in increasing complexity, distinguishes
regular, context-free, context-sensitive, and recursively
enumerable grammars [11]. Each class of grammar has a
characteristic graphical structure of its derivations: regular
grammars produce linear derivations, context-free gram-
mars produce trees (Fig. 1), and context-sensitive and

recursively enumerable grammars produce more elaborate
graphs. Associated with an increase in complexity is an
increased difficulty of parsing [4]. Because biological
instantiations of grammars must have been discovered
by evolution, there is a strong bias toward simpler gram-
mars; we consider context-free grammars (CFGs), which
are the lowest order of the Chomsky hierarchy that supports
hierarchical structure.
Despite their ubiquity in models of complex generative

systems, grammars have hitherto played a minor role in
physics, and most known results on grammars are theorems
regarding worst-case behavior [12], which need not re-
present the typical case. Human languages show Zipf’s law
[13–15], a power-law dependence of word frequency on its
rank, and many sequences, including human text, show
long-range information-theoretic correlations [16–18],
which can be created by a CFG [18]; but are these typical
features of some ensemble of grammars? In this work we
initiate this research program by proposing and simulating
an ensemble of CFGs, so that grammars can be considered
as physical systems [19]. We will find that CFGs possess
two natural “temperature” scales that control grammar
complexity, one at the surface interface, and another in

FIG. 1. Illustrative derivation trees for (a) simple English
sentence, and (b) the RNA secondary structure (after [6]). The
latter is a derivation of the sequence “gacuaagcugaguc” and
shows its folded structure. Terminal symbols are encircled.
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the tree interior. As either of these temperatures is lowered,
there is a phase transition, which corresponds to the
emergence of nontrivial information propagation. We
characterize this phase transition using results from sim-
ulations, and understand its location by a balance between
energy and entropy.
Generative grammars.—A generative grammar is

defined by an alphabet χ and a set of rulesR. The alphabet
has N hidden, “nonterminal” symbols χH, and T observ-
able, “terminal” symbols χO. The most general rule is
of the form a1a2…an → b1b2…bm, where ai ∈ χH,
bi ∈ χ ¼ χH ∪ χO. In a CFG the rules are specialized to
the form a1 → b1b2…bm, and we will insist that m ≥ 1, so
that there is no “empty” string. Without loss of generality,
we consider CFGs in the Chomsky normal form, in which
case all rules are of the form [4] a → bc or a → A, where a,
b, c ∈ χH and A ∈ χO. Note that we may have b ¼ a, or
b ¼ c, or a ¼ b ¼ c. Any derivation in the Chomsky
reduced form can be drawn on a binary tree. Beginning
from the start symbol S ∈ χH, rules are applied until the
string contains only observable symbols. Such a string is
called a sentence. The set of all sentences is the language of
the grammar. Given a string of observables S ¼ A1…Al
and a grammar G, one can ask whether there exists a
derivation that produces S from the start symbol S; if so, S
is said to be grammatical.
A formal grammar as defined above can only distinguish

grammatical from ungrammatical sentences. A richer
model is obtained by giving each rule a non-negative real
valued weight. Such a weighted grammar is useful in
applications, because weights can be continuously driven
by a learning process, and can be used to define proba-
bilities of parses. Moreover, a weighted grammar can be put
into the Gibbs form, as shown below. For CFGs, to every
rule of the form a → bc we assign a weight Mabc, and to
every rule of the form a → A we assign a weight OaA.
Each candidate derivation of a sentence has two different

types of degrees of freedom. There is the topology T of the
tree, namely the identity (terminal or nonterminal) of each
node, as well as the variables, both terminal and non-
terminal, on the nodes. We write ΩT for the set of internal
factors, i.e., factors of the form a → bc, and ∂ΩT for the
boundary factors, i.e., those associated to a → A rules. The
number of boundary factors is written lT , which is also the
number of leaves. Since derivations are trees, the number of
internal factors is lT − 1. We will write σ for nonterminal
symbols, and o for terminals; these can be enumerated in an
arbitrary way 1;…; N and 1;…; T, respectively. Given T ,
we can write σi for the value of the nonterminal on site i,
and similarly oj for the terminal on site j. The number of σi
is 2lT − 1, while the number of oj is lT . We write G for the
pair M, O, σ for fσig, and o for fotg.
To define a probability measure on derivations, it is

convenient to factorize it into the part specifying T , and the
remainder. In this way, we separate the tree shape from the

influence of the grammar on variables. For a fixed T , the
weight of a configuration is

Wðσ; ojT ;GÞ ¼
Y
α∈ΩT

Mσα1σα2σα3

Y
α∈∂ΩT

Oσα1oα2
; ð1Þ

where each α ¼ ðα1; α2; α3Þ is a factor in the order
σα1 → σα2σα3 . Note that Mabc ≠ Macb in general; thus
the left and right branches are distinguished [20]. We
can write W ¼ e−E with

E ¼ −
X
a;b;c

πabcðσÞ logMabc −
X
a;B

ρaBðσ; oÞ logOaB; ð2Þ

where πabc is the number of times the rule a → bc appears
in the configuration σ, and likewise, ρaB is the number of
times the rule a → B appears. This defines a conditional
probability measure on configurations Pðσ; ojT ;GÞ ¼
e−Eðσ;ojT ;GÞ=ZðT ;GÞ where

ZðT ;GÞ ¼
X
fσi;otg

e−Eðσ;ojT ;GÞ: ð3Þ

All configurations have S at the root node. For simplicity,
in this work we consider as a model for the tree topology
probability PðT jGÞ ¼ Wtree=Ztree with WtreeðT Þ ¼
pj∂ΩT jð1 − pÞjΩT j, where p is the emission probability,
the probability that a hidden node becomes an observable
node. p controls the size of trees; wewill choose it such that
the tree size distribution is cut off above a length ξ ¼ 1000.
Some facts about the resulting binary trees are recorded in
the Supplemental Material (SM) [22].
A model with weights of the form of Eq. (1) is called a

weighted CFG (WCFG). In the particular case where 1 ¼P
b;cMabc ¼

P
AOaA for all a, it is easy to see thatM andO

are conditional probabilities: Mabc ¼ Pða → bcja →
nonterminalÞ and OaA ¼ Pða → Aja → terminalÞ. In this
case the model is called a probabilistic CFG (PCFG). In the
main text, we consider aweightedCFG,modelW; in the SM,
we show that our results are robust in model P, a PCFG.
There are tradeoffs between these models: model P is easier
to sample, because it hasZðT ;GÞ ¼ 1 from normalization of
probability, and thus is factorized. But model W is more
amenable to theory, since it is less constrained.
Random language model.—Each grammar defines prob-

abilities for sentences. To extract the universal properties of
grammars, which do not depend on all details of M and O,
we need a measure on the space of grammars. What is an
appropriate measure? From Eq. (2), logM and logO are
analogous to coupling constants in statistical mechanics. A
simple model is to assume a Gaussian distribution for these,
so that M and O are lognormal. This can be motivated as
follows: language evolution is a dynamical process, which
must be slow in order for language to remain comprehen-
sible at any given moment. If each logMabc and logOaB are
the accumulation of independent, additive increments [25],
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these will lead to a lognormal. We define deep and surface
sparsities as, respectively,

sd¼
1

N3

X
a;b;c

log2
�
Mabc

M̄

�
; ss¼

1

NT

X
a;B

log2
�
OaB

Ō

�
; ð4Þ

where M̄ ¼ 1=N2 and Ō ¼ 1=T are the corresponding
uniform probabilities; it is convenient to use this normali-
zation even for model W where weights are not strictly
normalized. A lognormal distribution of grammar weights is

PGðM;OÞ≡ Z−1
G Je−ϵdsde−ϵsss ; ð5Þ

where J ¼ e−
P

a;b;c
logMabc−

P
a;B

logOaB , and the space of M
andO is defined by appropriate normalization and positivity
constraints.We define the random languagemodel (RLM) as
the ensemble of grammars drawn from Eq. (5).
An alternative motivation of Eq. (5) is that this is the

maximum-entropy measure when the grammar averages s̄d
and s̄s are constrained. sd and ss measure the density of rules
about their respective median values M̄ and Ō. When sd and
ss are finite, all rules must have a finite probability: this
reflects the fact that, given any finite amount of data, one can
only put a lower bound on the probability of any particular
rule. In model W the Lagrange multipliers ϵd and ϵs satisfy

sd ¼
N3

2ϵd
; ss ¼

NT
2ϵs

: ð6Þ

When ϵd → ∞, s̄d → 0, which is the value corresponding to
a completely uniform deep grammar, that is, when for a
nonterminal a, all rules a → bc have the same probability
1=N2. This is clearly the limit in which the grammar carries
no information. As ϵd is lowered, sd increases, and the
grammar carries more information. In terms of how deter-
ministic the rules are, ϵd plays the role of temperature, with
random↔ hot and deterministic↔ cold;wewill refer to it as
the deep temperature.This analogy can alsobe seen formally:
in the SM, we show that if the energy E is replaced by βE,
then Eq. (6) is replaced by sd ¼ β2N3=ð2ϵdÞ, such that
lowering ϵd is equivalent to increasing β. Similarly, ϵs
controls information transmission at the surface; we call it
the surface temperature.
To investigate the role of ϵd on language structure, we

sampled grammars from the RLM at fixed values T ¼ 27,
ϵs=ðNTÞ ¼ 0.01. Since the surface sparsity is large, there is
already some simple structure at the surface; we will
explore how deep structure emerges as N and ϵd are varied.
For each value of N and ϵd, we created 120 distinct
grammars, from which we sample 200 sentences (see
SM for more details). Altogether, approximately 7200
distinct languages were constructed.
The information content of a grammar G is naturally

encoded by Shannon entropies. For a sequence o1;o2;…;ok
the Shannon block entropy rate is

HsðG; kÞ ¼
1

k
hlog 1=Pðo1; o2;…; okjGÞi: ð7Þ

For CFGs, we can also consider the block entropy rate of
deep configurations,

HdðG; kÞ ¼
1

k
hlog 1=Pðσ1; σ2;…; σkjGÞi; ð8Þ

where the symbols are taken from a (leftmost) derivation. In
both cases the ensemble average is taken with the actual
probability of occurrence, PðojGÞ for Hs, and PðσjGÞ
for Hd.
The grammar averages H̄dðkÞ and H̄sðkÞ are shown in

Fig. 2, for k as indicated; here and in the following, the bars
show the 20th and 80th percentiles, indicating the observable
range ofHd andHs over the ensemble of grammars [26]. The
dependence on ϵd is striking: for ϵd ≳ N3= log2N, both
H̄sð1Þ and H̄dð1Þ are flat. In this regime, H̄dð1Þ ≈ logN,
indicating that although configurations strictly follow the
rules of a WCFG, deep configurations are nearly indistin-
guishable from completely random configurations.
However, at ϵd ¼ ϵ� ≈ N3= log2N there is a pronounced
transition, and both entropies begin to drop. This transition
corresponds to the emergence of deep structure.
The first block entropy HdðG; 1Þ measures information

in the single-character distribution, while the differential
entropies δHdðG; kÞ ¼ ðkþ 1ÞHdðG; kþ 1Þ − kHdðG; kÞ
measure incremental information in the higher-order dis-
tributions [17]. The Shannon entropy rate including all
correlations can either be obtained from limk→∞HdðG; kÞ,
or from limk→∞δHdðG; kÞ. These coincide, but the latter
converges faster [17]. In the SM, we show that δHdðG; kÞ,
and thus, the limiting rate appears to collapse with ϵ̃d logN.
For all entropies, the sample-to-sample fluctuations
decrease rapidly with k, suggesting that the limiting rates
are self-averaging.
To further investigate the nature of the transition, we

show in Fig. 3(a) a Zipf plot: the frequency of each symbol,
arranged in decreasing order. Figure 3(a) shows the Zipf
plot for deep structure; the Zipf plot for surface structure is

FIG. 2. Shannon entropy of random CFGs as functions of
ϵ̃d ¼ ϵd=N3. (a) Block entropy of hidden configurations for
indicated k andN. (b) Block entropy of observed strings; symbols
as in (a). The constant value for ϵd > ϵ� depends on the surface
temperature ϵs. Bars indicate 20th and 80th percentiles.
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similar, but less dramatic (see SM). We see a sharp change
at ϵ�: for ϵd > ϵ�, the frequencies of hidden symbols are
nearly uniform, while below ϵ�, the distribution is closer to
exponential (In the SM, we show that a power-law regime
for the observable symbols appears when T is large). The
permutation symmetry among hidden symbols is thus
spontaneously broken at ϵ�.
What is the correct order parameter to describe this

transition? The ferromagnetic order parameter is
mr ¼ hNδσi;r − 1i, where i is a site. This does not show
any signal of a transition, despite the fact that the start
symbol explicitly breaks the replica symmetry. A more
interesting choice is one of Edwards-Anderson type, such
as QEA

rs ¼ hNδσi;r − 1ihNδσi;s − 1i where r and s label
different sentences produced from the same grammar,
and σi is a specified site [27]. However, sentences produced
by a CFG do not have fixed derivation trees, so we need to
compare symbols in relative position. For each interior rule
a → bc we can define

QabcðGÞ ¼ hδσα1 ;aðN2δσα2 ;bδσα3 ;c − 1Þi; ð9Þ

averaged over all interior vertices α, and averaged over
derivations. Here, σα1 is the head symbol at vertex α, and
σα2 , σα3 are the left and right symbols, respectively. Q
measures patterns in rule application at each branching of a
derivation tree. It is thus an order parameter for deep
structure. Upon averaging over grammars in the absence of
any fields, the permutation symmetry must be restored:
¯Qabc ¼ q0 þ δabql þ δacqr þ δbcqh þ δabδacq�. As shown

in the SM, these components show a transition, but there is
significant noise below ϵ�, despite there being 120 replicas
at each point. Evidently, Qabc has large fluctuations below

ϵ�. This suggests a definition Q2 ≡P
a;b;c Q

2
abc, plotted in

Fig. 3(b). The signal is clear: on the large scale, Q2 has a
scaling form Q2 ≈ N3fðϵd=ϵ�Þ and is small above ϵ�. The
scaling Q2 ∼ N3 suggests that below the transition, all
hidden symbols start to carry information in the deep
structure.

Theory.—How can we gain some theoretical insight into
the RLM? Consider the entropy of an observed string of
length l, composed of n sentences of length lk,

P
klk ¼ l.

The entropy of this string derives from three distinct
combinatorial levels: (i) each sentence can be represented
by a derivation tree with many different topologies, (ii) each
derivation tree can host a variety of internal hidden
variables, and (iii) given the hidden variables, the observed
symbols can themselves vary.
Some scaling considerations are useful. Each derivation

tree can have many topologies: the entropy of binary trees
scales as lk log 4, so that the total tree entropy scales as
St ∼ l log 4. Each derivation tree has 2lk − 1 hidden
variables, so that the total number of hidden d.o.f. is
2l − n, and the corresponding deep entropy scales as
Sd ∼ ð2l − nÞ logN. Finally, the sentences have an entropy
So ∼ l logT.
We see that when typical sentences are of length

hli ≫ 1, so that l − n ∼ l, these numbers are independent
of partitioning, to the leading order. For large hli, we get
the scaling S ∼ l logð4N2TÞ.
This must be compared with the “energetic” terms

logWtree ¼ ðl − nÞ logð1 − pÞ þ l logp ∼ −2l log 2 for
p near 1=2, and E, Eq. (2). In E, π is positively correlated
with M, since rules with a higher weight are more
frequently used; hence we can obtain a simple scaling
estimate E ∼ −N3π logm − NTρ logo where π is the mean
value of πabc, and logm is the value of a typical positive
fluctuation of logMabc, and is similarly for O. From the
sum rules

P
a;b;cπabc ¼ jΩj ¼ l − n and

P
a;BρaB ¼

j∂Ωj ¼ l we have π ¼ ðl − nÞ=N3, ρ ¼ l=ðNTÞ. The
mean value of logMabc is log M̄, and the mean value of
logOaB is log Ō. These contributions lead to a constant
value of E. The positive fluctuations in logM and logO
that couple to E scale as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN3=2ϵdÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNT=2ϵsÞ
p

,
respectively, leading to

E ∼ −l

ffiffiffiffiffiffiffi
N3

2ϵd

s
− l

ffiffiffiffiffiffiffi
NT
2ϵs

s
þ const: ð10Þ

Combining this with S, the effective free energy F ¼
E − logWtree − S reflects a competition between energy
and entropy. If we consider N and ϵd as varying, then there
is a scale ϵ� ¼ N3= log2N where the energetic fluctuations
balance entropy. For ϵd ≫ ϵ�, the energy of a configuration
is unimportant, and the grammar is thus irrelevant: the
language produced by the WCFG must then be indistin-
guishable from random sequences, as found empirically
above. In contrast, for ϵd ≪ ϵ�, the language reflects those
sequences with high intrinsic weight, and their entropy is
less important. The characteristic scale ϵ� identified by
these simple arguments agrees with that found empirically
above, and locates the emergence of deep structure.

FIG. 3. (a) Zipf plot of hidden symbols for N ¼ 40. Here
ϵ̃d ¼ ϵd=N3. (b) Order parameter Q2, with bars indicating 20th
and 80th percentile ranges over grammars at each parameter
value. Inset: same plot in log-log axes.
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However, further work is needed to predict the behavior of
Q2, Hs, and Hd.
Learning human languages.—Around 6000 languages

are spoken around the world [28]; given fractured and
highly sparse input, how does a child come to learn the
precise syntax of one of these many languages? This
question has a long history in linguistics and cognitive
science [29,30]. One scenario for learning is known as the
Principles and Parameters (P&P) theory [31]. This posits
that the child is biologically endowed with a general class
of grammars, the “principles,” and by exposure to one
particular language, fixes its syntax by setting some
number of parameters, assumed to be binary. For example,
the head-directionality parameter controls whether verbs
come before or after objects, like English and Japanese,
respectively. A vast effort has been devoted to mapping out
the possible parameters of human languages [28,32]. The
richness of the discovered structure has been used as
criticism of the approach [33]: if the child needs to set
many parameters, then do these all need to be innate? This
would be a heavy evolutionary burden, and a challenge to
efficient learning.
The RLM can shed some light on this debate. First, since

only two living human languages are known to possess
syntax beyond CFG [34], we consider WCFGs a valid
starting point [37]. Following experimental work [30], we
picture the learning process as follows. Initially, the child
does not know the rules of the grammar, so it begins with
some small number of hidden symbols and assigns uniform
values to the weights M and O. To learn is to increase the
likelihood of the grammar by adjusting the weights and
adding new hidden symbols. As weights are driven away
from uniform values, the temperatures ϵd and ϵs decrease.
Eventually, the transition to deep structure is encountered,
and the grammar begins to carry information.
In the absence of any bias, this transition would occur

suddenly and dramatically, spontaneously breaking all N3

directions in M space simultaneously, as in Fig. 3(b).
However, in realistic child language learning, the child’s
environment acts as a field on this likelihood ascent, and
can cause the structure-emerging transitions to occur at
different critical deep temperatures, depending on their
coupling to the field. For example, a left-right symmetry
breaking could correspond to setting the head directionality
parameter.
Although this description is schematic, we insist that the

various symmetry-breaking transitions, which could give
rise to parameters, are emergent properties of the model.
Thus, if there are indeed many parameters to be set, these
do not all need to be innate: the child only needs the basic
structure of a WCFG, and the rest is emergent. The P&P
theory is thus consistent with existence of many parame-
ters. If the RLM can be solved, by which we mean that the
partition function Z can be computed, then the series of
symmetry-breaking transitions that occur in the presence of

a field can be inferred, and a map of syntax in CFGs could
be deduced. This is a tantalizing goal for future work.
Conclusion.—We introduced a model of random lan-

guages, which captures the generative aspect of complex
systems. The model has a transition in parameter space that
corresponds to the emergence of deep structure. Since the
interaction is long-range, we expect that the RLM, or a
variant, is exactly solvable. We hope that this will be
clarified in the future.
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[14] R. F. i. Cancho and R. V. Solé, Least effort and the origins of
scaling in human language, Proc. Natl. Acad. Sci. U.S.A.
100, 788 (2003).

PHYSICAL REVIEW LETTERS 122, 128301 (2019)

128301-5

https://doi.org/10.2307/2371809
https://doi.org/10.1038/nature01255
https://doi.org/10.1038/nature01255
https://doi.org/10.1093/nar/gkg614
https://doi.org/10.1093/nar/gkg614
https://doi.org/10.1007/s10955-015-1441-4
https://doi.org/10.1007/s10955-015-1441-4
https://doi.org/10.1038/nature00771
https://doi.org/10.1038/nature00771
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1073/pnas.0335980100


[15] A. Corral, G. Boleda, and R. Ferrer-i Cancho, Zipf's law for
word frequencies: Word forms versus lemmas in long texts,
PLoS One 10, e0129031 (2015).

[16] W. Ebeling and T. Pöschel, Entropy and long-range corre-
lations in literary English, Europhys. Lett. 26, 241 (1994).

[17] T. Schürmann and P. Grassberger, Entropy estimation of
symbol sequence, Chaos 6, 414 (1996).

[18] H.W. Lin and M. Tegmark, Critical behavior in physics and
probabilistic formal languages, Entropy 19, 299 (2017).

[19] G. Parisi, Complex systems: A physicist's viewpoint,
Physica (Amsterdam) 263A, 557 (1999).

[20] Indeed if the left-right branches are not distinguished,
CFGs do not have any more expressive power than regular
grammars [21].

[21] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger,
Parikh’s theorem: A simple and direct automaton construc-
tion, Inf. Proc. Lett. 111, 614 (2011).

[22] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.128301 which in-
cludes details on binary trees, sampling methods, robustness
in PCFG, differential entropies, and equation derivations,
and Refs. [23,24].

[23] S. Chib and E. Greenberg, Understanding the Metropolis-
Hastings algorithm, Am. Stat. 49, 327 (1995).

[24] P. Flajolet and R. Sedgewick, Analytic Combinatorics
(Cambridge University Press, Cambridge, England, 2009).

[25] D. Sornette and R. Cont, Convergent multiplicative proc-
esses repelled from zero: Power laws and truncated power
laws, J. Phys. I (France) 7, 431 (1997).

[26] The error bars in measurements are then smaller by factor
approximately

ffiffiffiffiffiffiffiffi
120

p
∼ 11.

[27] D. J. Gross, I. Kanter, and H. Sompolinsky, Mean-Field
Theory of the Potts Glass, Phys. Rev. Lett. 55, 304
(1985).

[28] M. C. Baker, The Atoms of Language: The Mind’s Hidden
Rules of Grammar (Basic Books, New York, 2008).

[29] R. C. Berwick, P. Pietroski, B. Yankama, and N. Chomsky,
Poverty of the stimulus revisited, Cogn. Sci. 35, 1207
(2011).

[30] C. Yang, S. Crain, R. C. Berwick, N. Chomsky, and J. J.
Bolhuis, The growth of language: Universal Grammar,
experience, and principles of computation, Neurosci. Bio-
behav. Rev. 81, 103 (2017).

[31] N. Chomsky, Lectures on Government and Binding: The
Pisa Lectures (Walter de Gruyter, Berlin, 1993), Vol. 9.

[32] U. Shlonsky, The cartographic enterprise in syntax, Lang.
Linguist. Compass 4, 417 (2010).

[33] G. Ramchand and P. Svenonius, Deriving the functional
hierarchy, Lang. Sci. 46, 152 (2014).

[34] Only Swiss-German and Bambara have confirmed features
beyond CFG [35,36].

[35] C. Culy, The complexity of the vocabulary of Bambara,
Linguistics and philosophy 8, 345 (1985).

[36] S. M. Shieber, Evidence against the context-freeness of
natural language, in Philosophy, Language, and Artificial
Intelligence (Springer, Cambridge, 1985), pp. 79–89.

[37] Note also that some lexicalized models used for machine
learning, such as [38], are WCFGs with multi-indexed
hidden variables.

[38] M. Collins, Head-driven statistical models for natural
language parsing, Computational linguistics 29, 589
(2003).

PHYSICAL REVIEW LETTERS 122, 128301 (2019)

128301-6

https://doi.org/10.1371/journal.pone.0129031
https://doi.org/10.1209/0295-5075/26/4/001
https://doi.org/10.1063/1.166191
https://doi.org/10.3390/e19070299
https://doi.org/10.1016/S0378-4371(98)00524-X
https://doi.org/10.1016/j.ipl.2011.03.019
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.128301
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1051/jp1:1997169
https://doi.org/10.1103/PhysRevLett.55.304
https://doi.org/10.1103/PhysRevLett.55.304
https://doi.org/10.1111/j.1551-6709.2011.01189.x
https://doi.org/10.1111/j.1551-6709.2011.01189.x
https://doi.org/10.1016/j.neubiorev.2016.12.023
https://doi.org/10.1016/j.neubiorev.2016.12.023
https://doi.org/10.1111/j.1749-818X.2010.00202.x
https://doi.org/10.1111/j.1749-818X.2010.00202.x
https://doi.org/10.1016/j.langsci.2014.06.013
https://doi.org/10.1007/BF00630918
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356

