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Colloids are rarely perfectly uniform but follow a distribution of sizes, shapes, and charges. This
dispersity can be inherent (static) or develop and change over time (dynamic). Despite a long history of
research, the conditions under which nonuniform particles crystallize and which crystal forms is still not
well understood. Here, we demonstrate that hard spheres with Gaussian radius distribution and dispersity
up to 19% always crystallize if compressed slowly enough, and they do so in surprisingly complex ways.
This result is obtained by accelerating event-driven simulations with particle swap moves for static
dispersity and particle resize moves for dynamic dispersity. Above 6% dispersity, AB2 Laves, AB13, and a
region of Frank-Kasper phases are found. The Frank-Kasper region includes a quasicrystal approximant
with Pearson symbol oS276. Our findings are relevant for ordering phenomena in soft matter and alloys.
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Introduction.—Dispersity [1] naturally exists in soft
matter where particle geometry and chemistry can vary
continuously. It is helpful to distinguish two types of
dispersities: static dispersity is introduced during particle
synthesis and does not change thereafter; dynamic disper-
sity includes thermal fluctuations and the response to
interactions of a particle with its environment. Examples
of dynamic dispersity are the variation of particle size
through exchange of mass or charge, or the adjustment of
particle shape due to forces from neighbors.
Early studies of colloids with static size dispersity

predicted a terminal dispersity for crystallization between
5% and 12% depending on the form of the size distribution
function [2–7]. Whereas systems below terminal dispersity
follow a standard phase transition into a face-centered cubic
(fcc) crystal or stacking variations thereof [8], systems
above were expected to fractionate into multiple coexisting
fcc crystals with narrower size distribution in each crystal
than the size distribution of the fluid [9–12]. We now know
that fractional crystallization does not occur in this way in
experiment and simulation. Instead, colloidal silica of
dispersity 14% coexists in the body-centered cubic (bcc)
crystal, Laves phases, and the fluid [13]. Similarly, sim-
ulations of hard spheres with dispersity 12% form Laves
phases [14], and high packing fraction and high dispersity
can crystallize the AlB2 structure [15]. These findings were
unexpected because Laves phases and AlB2 are tradition-
ally associated with binary systems [16–18].
It has been proposed that dynamic dispersity assists the

formation of Frank-Kasper (FK) phases [19] and other
topologically close-packed complex crystals [20–22].
Indeed, the FK phases A15, σ, and Laves C14 and C15
are found with micelles [23–28] and soft nanoparticles [29]
where shape dispersity and size dispersity are dynamic
because micelles and nanocrystal ligand shells can deform

and exchange molecules. Topologically close-packed crys-
tals also occur in the elements Mn and U at elevated
temperature [30–32] where conduction electrons are mobile.
In this contribution, we investigate the crystallization of

hard spheremixtureswith static and dynamic size dispersity.
While a fluid of identical hard spheres readily transitions to
fcc upon densification, minor modifications of the particles
strongly affects phase behavior. Soft particles with two
length scales [33,34], deformable particles [35,36], and hard
particles with anisotropic shape [37] favor topologically
close-packed or FK phases. Interaction softening is asso-
ciated with the appearance of bcc [38,39]. Recent simu-
lations of hard spheres focused on specific values of static
dispersity [14,15]. We build upon these works by applying
advanced sampling techniques that allow us to study
crystallization throughout the dispersity range 0 ≤ D ≤
19% and the packing fraction range 0.53 ≤ ϕ ≤ 0.63. We
determine the stability range of the Laves phase and report
the first crystallization of AB13 with hard particles in
simulation.Wealso discover a regionof FKphases including
a crystal with Pearson symbol oS276. We finish by discus-
sing the role of icosahedral local order and how ordering
above fcc-terminal dispersity can be achieved in experiment.
Methodology.—We perform event-driven molecular

dynamics (EDMD) simulations of hard spheres in the
NVT ensemble with periodic boundaries. Spheres are
initialized in a fully disordered starting configuration with
Gaussian radius distribution fðrÞ ∝ expf−½ð2r=σ − 1Þ2=
2D2�g, where the average diameter is σ ¼ 2hri. Either a
particle swap or a particle resize move may be included
each time two spheres collide. Both of these Monte Carlo
(MC) moves are performed in such a way that they obey
detailed balance [40]. In a particle swap move [45], the
radii of the two colliding spheres are swapped. In a particle
resize move [46], one radius is changed by a random
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number r01 ¼ r1 þ Δr, Δr ∈ ½−s; s� with step size s. The
other radius is set to r032 ¼ r31 þ r32 − r031 , which keeps ϕ
constant. Resize moves sample dynamic dispersity using a
semigrand ensemble. A move is accepted according to the
Metropolis criterion with probability minf1; ½fðr01Þfðr02Þ=
fðr1Þfðr2Þ�g if it does not create an overlap and rejected
otherwise. Results are obtained forN ¼ 1000 particles with
sporadic simulations of larger systems to test for finite-size
effects. The total simulation time is t ¼ 4 × 105τ, τ ¼
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=kBT
p

with particle mass m, Boltzmann constant kB,
and temperature T. We observe this hybrid EDMD-MC
approach [47] to order slightly faster than MC simulations
with swap moves [48–50].
Static dispersity.—We first crystallize hard spheres with

static dispersity. We compare stability diagrams for simu-
lations with and without particle swap moves to test the
effect of swaps on crystallization success. The stability
diagram without swaps has only two phases, amorphous
and fcc [Fig. 1(a)]. Our findings compare well with pre-
vious simulations that employ a similar simulation method
[51]. As in that work, fcc-terminal dispersity is at
ðϕ; DÞ ¼ ð0.58; 7%Þ. Above ϕ ¼ 0.58, the maximal dis-
persity for which crystallization occurs during simulation
gradually decreases. We also tested a few selected systems in
the amorphous region over the longer simulation time t ¼
2 × 106τ (about 1011 collisions). But even after such long
times no new crystallization event was found. This behavior
indicates a rapid slow-down of crystallization kinetics that
cannot be overcome with conventional EDMD.
To access crystallization in the amorphous region, we

repeat simulations in hybrid EDMD-MC by including
particle swap moves at each collision. Swap moves signifi-
cantly accelerate crystallization at high dispersity and
packing fraction [48–50]. In addition to fcc, the fluid now
develops large local density inhomogeneities [53,54] and
robustly and reproducibly crystallizes into Laves phases and
FK phases [Fig. 1(b)]. Particles do not fractionate into
multiple coexisting fcc crystals according to their size but

stronglymix. The Laves phase region spans forϕ > 0.59 up
to D ¼ 17%. It includes the point ðϕ; DÞ ¼ ð0.595; 12%Þ
where Laves phases were first seen in simulations of size-
disperse hard spheres [14]. TheFK region is located between
the Laves phase region and fcc. We observe pronounced
icosahedral local order and first-order phase transitions
throughout the FK region but cannot successfully identify
crystal structures. An exception is the crystal oS276, which
is discussed further below. The speed-up from swap moves
demonstrates that local rearrangements are essential to
achieve crystallization in simulations of size-disperse par-
ticles. Particles need to find appropriate locations in the unit
cell that best suit their size given the overall distribution.
Above 17% dispersity and 0.62 packing fraction, crystal-
lization was once more too slow for our algorithm with
swap moves (static dispersity) to access. The metastable
fluid must overcome high free energy barriers to trigger
crystallization and further grow in this region.
Dynamic dispersity.—Having established new ordering

phenomena with static dispersity, we now turn to hard
spheres with dynamic dispersity. In the absence of signifi-
cant interactions at low packing fraction, particle radii
change due to thermal fluctuations and follow a reference
distribution fðrÞ. At higher packing fraction radii adjust to
the requirements of the crystallizing system as ordering sets
in. We sample dynamic dispersity via particle resize moves
at each collision and assume in our simulation algorithm
that radius adjustments are subject to a free energy penalty
that strives to restore the reference distribution.
The stability diagram for dynamic dispersity in Fig. 2(a)

contains ordered phases over an even larger parameter
range. AB13 (isostructural to NaZn13) [55,56] is a crystal
structure not found in the stability diagram for static
dispersity [Fig. 1(b)], and the FK region is shifted to
higher packing fraction. Our simulations consistently
crystallize at ϕ ¼ 0.63, very close to random close packing,
and even at D ¼ 19%. Apparently, hard spheres with
dynamic dispersity crystallize much easier than hard
spheres with static dispersity.
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FIG. 1. Stability diagrams of hard spheres with static dispersity. At each parameter pair ðϕ; DÞ the dominant phase over four
simulations is marked. The distribution fðrÞ is used to initialize particle radii and does not change over time. We show data for EDMD
simulations (a) without MC moves and (b) with particle swap moves. In each simulation, the final state at the end of the simulation is
classified with the help of the radial distribution function and the bond orientational order diagram [52]. Filled symbols represent one of
the crystalline structures and pluses represent the amorphous (“Amorph,” fluid or glass) state.
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To quantify the dispersity that results from resize moves,
we compute the difference between the dispersity D set in
the reference distribution fðrÞ to the dispersity D0 chosen
by the system dynamically. The strongest shift of dispersity
occurs near phase boundaries [Fig. 2(b)]. While fluids
typically retain their dispersity, crystallization into fcc
lowers it. Dispersity of systems transforming into Laves
and AB13 shifts towards the ideal values 14% and 22% for
these crystals. We expect similar influences of the crystal
structure on the size distribution to occur in experiments
that include mass or charge exchange.
Characterization of crystal structures.—We describe the

three complex crystal structures found in our simulations in
more detail. Laves phases occupy a large area of the
stability diagram in the range D ¼ ð10%–17%Þ and
ϕ ≥ 0.59. In agreement with Ref. [14], cubic C14 Laves
and hexagonal C15 Laves coexist [Fig. 3(a)]. The radius
distribution transforms due to resize moves into a double
peak with maxima separated as expected from the binary
Laves phase stability size ratio of 0.76–0.84 and with the
area under the peaks following the composition AB2. Each
large particle [green in Fig. 3(a)] is the center of a Friauf
polyhedron from 12 small particles (red). Friauf polyhedra
are separated by tetrahedra (light red) that form the back-
bone of Laves phases and distinguish the two variants C14
(area “A”) and C15 (“B”).
By comparison of bond orientational order diagrams we

detect a new phase region at intermediate dispersity D ¼
ð6% − 12%Þ between fcc and Laves. The symmetry of
bond orientational order in simulations with N ¼ 1000
particles varies between icosahedral and defective decahe-
dral, preventing us from identifying crystal structures
unambiguously. We call this region the FK region because
a majority of particles have coordination environments
reminiscent of FK phases. Larger simulations with up to
N ¼ 20 000 order better. We analyze a simulation that
orders particularly well as evidenced by diffraction peaks
on a periodic lattice [arrows in inset of Fig. 3(b)]. The
snapshot contains a mixture of Friauf polyhedra building

blocks (green particles) and decagonal columns (area “C”),
occasionally separated by grains of Laves phase (“D”).
Interpenetrating two-shell Mackay polyhedra (55 particles)
form decagonal columns (64 particles) that sit at the
vertices and base-center of a crystal with Pearson symbol
oS276. Only coordination numbers (CN) 12, 14, 15, and 16
occur in oS276, which means it is a FK phase [19]. The
appearance of high-symmetry columns, Mackay clusters,
and the mixture of building blocks from known crystals
(Laves) identifies oS276 as a decagonal quasicrystal
approximant [57]. Unfortunately, our simulations are too
small to determine whether oS276 appears throughout the
FK region or if there are other crystals. In any case, we
expect any crystal structure in the FK region to be much
more complex than Laves phases.
Almost perfect and defect-free AB13 crystals assemble in

simulations with dynamic dispersity at high dispersity D ≥
18% and high packing fraction ϕ ≥ 0.62. Large particles
(red) occupy a simple cubic lattice, and small particles
(green) arrange into icosahedra filling the gaps [Fig. 3(c)].
To mimic the 1∶13 number ratio of AB13, the radius
distribution gradually self-organizes into a few large and
many small particles.
Transformation pathways.—In the stability diagrams of

Figs. 1 and 2, every simulation point is mapped to a specific
phase that is observed after a sufficiently long simulation
time. But not only the final simulation states are complex,
also the formation into the solid frequently proceeds via
multiple solid-solid phase transitions. As metastable phases
we observe bcc, and the FK phase γ brass. We analyze an
exemplary transformation pathway in Fig. 4. A sharp
decrease of dimensionless pressure P� marks the nucleation
event (point “A”). But the γ-brass crystal formed (“B”) is
short-lived. It rapidly transforms into bcc (“C”) and then to
defective fcc (“D”). The defects heal before the system
finally converts into a single fcc grain (“E”). Bcc and FK
phases with local icosahedral symmetry are common
metastable states during crystal nucleation [58], but are
usually not observed as easily and clearly during
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FIG. 2. (a) Stability diagram of hard spheres with dynamic dispersity. At each parameter pair ðϕ; DÞ, the dominant phase over four
simulations is marked. Particle radii change over time in the vicinity of the reference distribution fðrÞ and thus can adjust slightly to the
requirements of the crystal they want to transform into. (b) Change in dispersity ΔD ¼ D0 −D from the value D set in fðrÞ to the value
D0 chosen dynamically after phase transformation. D0 is measured by averaging over the last frames of the simulation. Dashed lines
indicate approximate phase boundaries.
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crystallization. More examples of complex transformation
pathways are included in Supplemental Material [40].
Discussion.—The crystallization of mixtures is more

complex and more difficult than the crystallization of
uniform particles. The particles must diffuse to order
successfully, which means they must overcome free-energy
barriers. Critical nucleation density increases with disper-
sity, and the driving force for crystallization in systems with
high dispersity is particularly low. Three strategies allow
ordering systems of nonuniform nanoparticles and colloids:
long time, soft interaction, and dynamic dispersity. Natural
opals made from spheres of two different sizes [16] likely
crystallize from a solution with initially continuous size
distribution. Successful opal crystallization could be the
result of drying conditions that equilibrate over geological
time scales much longer than typical laboratory experi-
ments. Soft interactions, such as flexible ligand shells [59]
and weakly decaying electrostatic forces [13], also assist
crystallization [53,54]. Particles with soft interactions are
less strongly constrained by their neighbors and therefore
diffuse more easily, speeding up crystallization. Finally,
dynamic dispersity improves crystallization because it
circumvents the need for particle diffusion altogether.
Spheres have a natural tendency to develop fivefold and

icosahedral local order [60–63]. This tendency is enhanced
by the introduction of dispersity and generally promotes
glass formation [64–67]. FK phases are good candidates for
crystal structures of size-dispersed spheres because they
combine local icosahedral order and periodicity. Indeed,
the entropic crystallization of quasicompounds from size-
dispersed hard spheres, hypothesized in 1999 [11], first
observed in 2018 [14], and now investigated systematically
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FIG. 3. Snapshots of (a) Laves phase at ðϕ; DÞ ¼ ð0.62; 12%Þ,
(b) quasicrystal approximant oS276 at ð0.61; 10%Þ, and (c)
AB13 at ð0.63; 19%Þ. Simulations are performed with resize
moves. Particles are drawn at 40% of their size for better
visibility. In (a) and (b), particle colors are chosen according to
coordination number CN: red (CN ¼ 12), yellow (14), brown
(15), green (16), and blue (CN ∉ f12; 14; 15; 16g). Tetrahedra
of red particles form the backbone of Frank-Kasper (FK)
phases. In (c), large particles are colored red, particles near
red particles green, and other particles transparent blue. Gray
lines indicate unit cells. Bond orientational order diagrams are
shown as insets. Right side contains radius distributions (top)
and diffraction images (bottom, via FFT [52]). The reference
radius distribution fðrÞ and the radius distribution measured at
the end of each simulation are compared.

FIG. 4. (Top) Evolution of reduced pressure P� ¼ Pπσ3=6kBT
during a particle swap simulation at ðϕ; DÞ ¼ ð0.60; 9%Þ that
contains a transformation from fluid to fcc in multiple steps.
(Bottom) Bond orientational order diagrams at five times during
the transformation: fluid (“A”), γ brass (“B”), bcc (“C”), defective
fcc (“D”), and fcc (“E”). Additional transformation pathways can
be found in the Supplemental Material [40].
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in this Letter, mimic the crystallization in alloys. This
connection relies on the observation that a continuous
radius distribution fðrÞ smears out and approximates the
discrete distribution of effective atom sizes in binary and
higher alloys. The formation of diverse coordination envi-
ronments is favored in both cases because it allows each
particle to occupy a site that is optimally suited to its size.
Larger and longer simulations are necessary to explore the
possibility of fractionation into multiple coexisting crystal
phases [12,13] and to identify candidate unit cells in the FK
region with high structural complexity. An icosahedral or
decagonal quasicrystal from size-dispersed spheres derived
from oS276 is a particularly intriguing prospect.
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