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We discuss a theoretical model of an on-demand single-particle emitter that employs a quantum dot,
attached to an integer or fractional quantum Hall edge state. Via an exact mapping of the model onto the
spin-boson problem we show that Coulomb interactions between the dot and the chiral quantum Hall edge
state, unavoidable in this setting, lead to a destruction of precise charge quantization in the emitted wave
packet. Our findings cast doubt on the viability of this setup as a single-particle source of quantized charge
pulses. We further show how to use a spin-boson master equation approach to explicitly calculate the
current pulse shape in this setup.
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Introduction.—The venerable field of quantum optics
has brought many remarkable technological advances in,
e.g., communication and encryption [1]. More fundamen-
tally it has allowed experimental tests of quantum mechan-
ics with unprecedented precision and control. This success
would not have been possible without innovations in
reliable on-demand single-photon sources. Recently, there
has been exciting new experimental activity in creating and
studying analogous sources, but with electrons and frac-
tional quasiparticles in quantum Hall edge states [2–10].
The particles emitted by these devices can be entangled
using electronic interferometers [11], thereby allowing one
to extend the ideas developed in quantum optics to the
realm of condensed matter physics. More importantly, the
particles’ statistics are different from that of photons, and
they are more amenable to the studies of interaction effects.
Therefore, this experimental setting offers new possibilities
in manipulating entangled quasiparticle pairs, and in high-
precision experimental studies of correlations in many-
body electron systems; see review [12].
One experimental proposal for creating single-particle

pulses uses a quantum dot (QD) connected to a quantum
Hall edge state [13–15]. An experiment with such an on-
demand single-electron source was performed in [16].
Here, the putatively quantized pulses are generated via
nonequilibrium driving of the quantum dot. In this paper
we study a model of this setup, shown in Fig. 1 with the QD
having a single level whose energy can be varied using an
applied bias voltage. When this energy rises from below to
above the chemical potential a particle can tunnel from the
dot into the edge. In the integer quantum Hall effect (IQHE)
case a linear voltage ramp generates a single-electron
excitation with minimal noise [14]. The presumed advan-
tage of this setup is that quantization of charge on the dot is
expected to lead to the quantization of the resulting charge
pulse on the edge. In contrast, we find that Coulomb

interactions, however weak, between the particles on the
dot and the edge destroy this precise charge quantization of
the emitted current pulse.
In this Letter we study the model shown in Fig. 1

describing a quantum dot with a time-dependent energy
level coupled by tunneling to a chiral QHE edge (integer or
fractional). In the integer quantum Hall effect case the
energy level on the dot represents an electron, whereas in
the fractional (FQHE) case, the energy level may represent
either an electron or a fractionally charged quasiparticle.
The particle on the dot is allowed to tunnel between the dot
and the edge. If the dot contains an electron it may be either
inside or outside of the QHE fluid, whereas if it contains a
fractionally charged quasiparticle it must be surrounded by
FQHE fluid in order to support these fractionalized charges.
As mentioned above, in both the integer and fractional

QHE case, interactions renormalize the charge of the
pulses, which can be described within the following

FIG. 1. Schematic picture of the model. A quantum dot is
attached to a quantum Hall edge state (integer or fractional) via a
quantum point contact. The voltage on the QPC can be used to
control the tunneling λðtÞ between the dot and the edge. We
assume that the dot has a single level with energy εðtÞ, which is
controlled by an applied gate voltage. The level can be occupied
with an electron in the IQHE case, or with a quasiparticle in the
case of FQHE.
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physical picture. Because of repulsive Coulomb inter-
actions the charge on the edge close to the quantum point
contact (QPC) gets depleted in the presence of a charge on
the dot. Following emission of a particle by the dot, charge
fills up the depleted area on the edge, which reduces the net
charge flowing downstream from the dot. Therefore, when
a particle tunnels from the dot into the edge, while the
charge leaving the dot may be quantized, the net charge in
the resulting current pulse downstream is always less than
the particle charge (for repulsive interactions).
Our results suggest that creating a source of precisely

quantized electron or quasiparticle pulses using such a
quantum dot setup would require extra fine-tuning. In order
to have a nonvanishing tunneling between the dot and the
edge they should be placed in proximity, thus inevitably
producing Coulomb interactions between the two. While
recent pioneering experiments by Glattli et al. reported
creation of single-electron pulses using a quantum dot
setup in the IQHE case [16], our theory suggests that
higher-precision measurements should find that this quan-
tization is not exact, and it would be interesting to compare
the results of such measurements with our predictions. In
the experimental setup of [16], the Coulomb interactions
between the dot and the edge will be partially screened by
the metallic gate. However, dipole interactions will remain.
In this paper, we first introduce our theoretical model and

show how the Hamiltonian of this model can be mapped to
the spin-boson problem. This mapping allows us to analyze
the effects of Coulomb interactions between the dot and the
edge. In the second part of the paper we use a generalized
master equation (GME) approach discussed in [17,18] to
obtain results for current pulse profiles. We refer to our
companion paper for more details on the calculations,
where we also compare the results obtained via a spin-
boson mapping with the results of perturbative calcula-
tions [19].
The model.—We consider a theoretical model of the

experimental setup presented in Fig. 1. The model is
described by the time-dependent Hamiltonian

ĤðtÞ ¼ Ĥ0ðtÞ þ ĤtunðtÞ þ Ĥint: ð1Þ

Here, the first term describes the quantum dot with a single
energy level εðtÞ [20], which is controlled by a time-
dependent gate voltage, together with the edge state with
velocity v, given in the bosonized form

Ĥ0ðtÞ ¼ εðtÞŜz þ
v
2

Z
dx
2π

ð∂xφ̂Þ2: ð2Þ

Here we introduced spin-1=2 operators describing occu-
pation numbers of the quantum dot, which we treat as a
two-level system. The operator ŜþðS−Þ creates (destroys) a
particle on the QD. In the case of electron tunnelling Ŝþ

creates an electron with charge −e on the dot with e > 0,

whereas in the case of a fractionalized charge tunneling it
creates a quasiparticle with charge −νe [21]. The presence
or absence of a particle on the dot is measured by the
operator N̂ ¼ Ŝz þ 1=2. In the following we assume large
Zeeman splitting and omit the physics of electron spin on
the edge.
The second term in the Hamiltonian (2) describes a chiral

edge (for a system of length L, assumed very large,
with periodic boundary conditions) of a Laughlin state at
filling fraction ν ¼ 1=ð2nþ 1Þ, and n ¼ 0; 1; 2;… [22].
Here, the bosonic field φ̂ is given in terms of its eigenmode
expansion with momentum k ¼ 2πm=L, m ∈ Z as
follows [23],

φ̂ðxÞ ¼ −
X
k>0

ffiffiffiffiffiffi
2π

kL

r
ðb̂keikx þ b̂†ke

−ikxÞe−ka=2; ð3Þ

where a is the short-distance cutoff, and bosonic operators
b̂k obey commutation relations ½b̂k; b̂†k0 � ¼ δkk0 . Here we
omit zero modes as well as the corresponding Klein factors,
as these do not affect the results in the thermodynamic limit
in our setup. We also note that the results do not depend
on the cutoff a, after sending it to 0 at the end of the
calculations.
The electron and quasiparticle operators in the bosonized

form [22–24] are described by the vertex operators

ψ̂ðxÞ ¼ 1ffiffiffiffiffiffi
2π

p a−
γ2

2 e−iγφ̂ðxÞ; ð4Þ

where γ ¼ 1=
ffiffiffi
ν

p
for electrons, and γ ¼ ffiffiffi

ν
p

for quasipar-
ticles. It is convenient to account for these two different
possibilities in a unified manner, and in the following by
referring to particles we assume electrons or quasiparticles
with the corresponding value of γ. Note that the charge of
the particle is given by q ¼ −γ

ffiffiffi
ν

p
e.

The second term in the Hamiltonian (1) describes the
coupling of the dot to the edge via a QPC with, in general,
time-dependent tunneling amplitude λðtÞ, which can be
produced by varying the QPC gate voltage

ĤtunðtÞ ¼ λðtÞψ̂†ð0ÞŜ− þ H:c: ð5Þ

Finally, we model the Coulomb interactions between the
dot and the edge as

Ĥint ¼ −γ
g
2π

∂xφ̂ð0ÞŜz; ð6Þ

where we used the bosonized form of the charge density
operator on the edge ρ̂ðxÞ ¼ þe

ffiffiffi
ν

p ∂xφ̂=2π, with g > 0
being the interaction strength. In this model, the Coulomb
interaction is assumed to be a delta function acting at a
single point x ¼ 0 on the edge. In the case of the Coulomb
interaction being spread over a finite region we can still use
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the above form, where the coupling geff can be determined
from the interaction form, as discussed in Supplemental
Material [25].
Mapping to the spin-boson problem.—One can map (1)

to the well-known spin-boson model using the unitary
transformation suggested by Furusaki and Matveev [26]
(see also Supplemental Material [25]). Following these
authors we define an operator Û1 ¼ exp½−iγφ̂ð0ÞŜz�. Under
a unitary transformation ˆ̃H ¼ Û1

†Ĥ Û1 the Hamiltonian
assumes the spin-boson form that, omitting an unimportant
constant, is given by

ˆ̃H ¼ εðtÞŜz þ
v
2

Z
dx
2π

ð∂xφ̂Þ2

þ λðtÞ
ffiffiffi
2

π

r
a−ðγ2=2ÞŜx þ vγ̃Ŝz∂xφ̂ð0Þ: ð7Þ

In this representation the effect of the Coulomb interactions
amounts to a rescaling of γ such that

γ̃ ¼ γ

�
1 −

g
2πv

�
: ð8Þ

After introducing a shorthand notation for the coupling
strengths as

ΔðtÞ ¼ λðtÞ
ffiffiffi
2

π

r
a−ðγ2=2Þ; ηk ¼ vγ̃

ffiffiffiffiffiffiffiffi
2πk
L

r
e−ka=2; ð9Þ

we arrive at familiar expression for the spin-boson
Hamiltonian cf., [27],

ˆ̃H ¼ εðtÞŜz þ ΔðtÞŜx
þ
X
k>0

ωkb̂
†
kb̂k − iŜz

X
k>0

ηkðb̂k − b̂†kÞ; ð10Þ

where ωk ¼ vk. It is worth noting that the transformation
between Hamiltonians of Eq. (1) and Eq. (10) is exact.
The first two terms of the Hamiltonian in Eq. (10)

represent a spin 1=2 in the presence of a time-dependent
magnetic field BðtÞ ¼ εðtÞêz þ ΔðtÞêx. The last two terms
describe the Hamiltonian of a bosonic heat bath together
with the spin-boson coupling. The spectral function of the
spin-boson model is defined in the standard way using the
following equation,

JðωÞ ¼ π
X
k>0

η2kδðω − ωkÞ ¼ 2παωΘðωÞe−ωa=v; ð11Þ

where ΘðωÞ is the Heaviside theta function. This corre-
sponds to a heat bath with Ohmic dissipation, and dimen-
sionless coupling α ¼ γ̃2=2. We estimate for experiments
similar to [28,29] that g=2πv ¼ 0.04 and hence α ¼ 0.15

for the ν ¼ 1=3 state. See Supplemental Material [25] for
more details.
Current.—Now let us turn to a discussion of the main

subject of this paper, the behavior of the current under a
nonequilibrium drive of the QD. First, it is useful to obtain
general exact results for the current, while we postpone the
discussion of the numerical approach to the next section.
The Hamiltonian (7) can be refermionized using a unitary
transformation with the operator Û2 ¼ exp½iγ̃ φ̂ð0ÞŜz�,
which brings it into a noninteracting form with the new
value of γ̃; i.e., the Hamiltonian is of the form of Eq. (1)
except the last term is absent. The equations of motion
generated by this Hamiltonian can be used to relate the
currents on the edge and on the QD,

v
2π

½∂xφ̂ðþ0Þ − ∂xφ̂ð−0Þ� ¼ γ̃
dN̂
dt

: ð12Þ

Using equations of motion for φ̂ðx; tÞ away from x ¼ 0, we
obtain an expression for the current on the edge at x > 0,

Îðx; tÞ ¼ −q̃
dN̂ðt − x=vÞ

dt
; ð13Þ

where Î ¼ vρ̂ is the current operator, and q̃ ¼ ðγ̃=γÞq.
One would expect from charge conservation that the

proportionality constant should be equal to the charge of
the particle q. Remarkably, in the interacting case the
charge gets renormalized by a factor γ̃=γ that is less than 1
for repulsive interactions. In other words, in the presence
of interactions, one cannot obtain a precisely quantized
charge pulse.
Master equation approach.—The mapping to the spin-

boson Hamiltonian is particularly useful, since it enables
one to use powerful numerical techniques developed for
this well-studied problem. For α < 1=2 one could also use
the stochastic Schrödinger equation method [30]. However,
in this Letter we adopt the generalized master equation
approach, which makes possible calculations for arbitrary
times provided α is small. This allows the calculation of the
current resulting from nonequilibrium driving of the
quantum dot.
The starting point of the calculations is the derivation of

the path-integral solution for the time evolution of the
reduced density matrix for the spin 1=2 using the Feynman-
Vernon influence functional approach; see [17]. This is
done by exactly tracing out the heat-bath degrees of
freedom. From the path-integral solution one then derives
the GME describing the time evolution of hŜzi [17,18],

d
dt

hŜzðtÞi ¼
Z

t

0

dτ

�
1

2
Kaðt; τÞ − Ksðt; τÞhŜzðτÞi

�
: ð14Þ

Here the integral kernels Kða;sÞðt; τÞ can be obtained in
terms of a series expansion inΔðtÞ for arbitrary α. However,
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each factor of ΔðtÞ in this expansion comes with the
integration over time; hence we have to truncate the series
in our numerical calculations in the case when α is not
small. Remarkably, to linear order in α it is possible to sum
up the entire series expansion in ΔðtÞ analytically [18]
and obtain expressions for Ka;sðt; τÞ that are exact in ΔðtÞ.
This truncation of the master equation is useful for
α ¼ γ̃2=2 ≪ 1. We summarize the derivation of the
GME and the definitions of the kernels in Supplemental
Material [25].
In the top panel of Fig. 2 we present the results for the

current at constant bias voltage applied to the dot, εðtÞ ¼ ε0
for t > 0. The dot is taken to be occupied at t ¼ 0
corresponding to εðtÞ large and negative for t < 0. This
models the step in the first half-period of a square-wave
bias. The time dependence of the tunneling strength is

λðtÞ ¼ λΘðtÞ. Here we use the exact analytical expression
obtained in [30,31] for the time evolution, which is valid at
α ≪ 1; see details in Supplemental Material [25]. We find
that the current is a highly oscillatory function of time after
the voltage ramp and decays exponentially at long times. In
the inset we show behavior of NðtÞ as a function of time for
the same step-function protocol. Notice that the total charge
leaving the dot converges to q in the long time limit, which,
according to Eq. (13), corresponds to a downstream current
pulse of charge q̃.
In the bottom panel of Fig. 2 we present our numerical

results using the GME for the current on the quantum
dot after a linear voltage ramp with rate ξ, so that
εðtÞ ¼ ξðt − t0Þ. However, in this case in contrast to a step
pulse, not all the charge leaves the quantum dot during the
ramp; instead the occupation number of the QD at late
times saturates to expð−πΔ2=2ξÞ. This is rather unexpected
because εðtÞ becomes very large at late times. A similar
observation was made previously in the context of the spin-
boson problem [30,32,33]. This behavior is distinctly
nonadiabatic since the equilibrium occupation of the QD
at large bias must vanish. At late times, the current
produced by the linear ramp exhibits Rabi oscillations
with an instantaneous frequency set by εðtÞ [34].
In the experimental setting, including effects such as

phonons, the remaining charge on the dot is eventually
expected to leave the QD at long times, producing a charge
pulse downstream with charge q̃. However, if the current is
measured over a timescale shorter than these processes,
then our results provide another constraint to quantization
of charge pulses in the linear voltage ramp protocol.
Discussion.—In this paper we studied a theoretical model

of a single-particle emitter of charge pulses that uses a
quantum dot coupled to a quantum Hall edge state. We
showed that it is not possible to obtain precise quantization
of these pulses due to Coulomb interactions between the dot
and the edge. The interactions effectively add a capacitance
to the system, and the charge stored on this capacitor is
released in addition to the charge on the dot in the emission
process, thus reducing the charge in the outgoing pulse on
the edge. Coulomb interactions are unavoidable in the QD
setup, and hence we argue that it is perhaps not the most
promising route for creating precisely quantized charge
pulses. It would be interesting to compare our theoretical
predictionswith higher precisionmeasurements of charge in
single-particle emitters using a quantum dot, such as in [16].
This raises the question of how to mitigate the destruc-

tion of charge quantization if one wants to obtain a single-
particle source with precisely quantized charge pulses. In
the quantum dot setup described above, one will want to
screen the Coulomb interaction as much as possible in
order to minimize the effect; however it can never be
eliminated completely.
Coulomb interactions do not plague proposals where

there is no quantum dot but instead a voltage is applied

FIG. 2. Results of the numerical solution of the generalized
master equation for the time dependence of −dN=dðtΔÞ, which is
related to the current on the edge via Eq. (13). In both figures we
turn on the tunneling λðtÞ at the QPC at t ¼ 0, provided that the
dot is filled, and the edge is in equilibrium at t < 0. (Top) Time
evolution of the current after a steplike pulse, see text, which
leads to discharging of the dot at long times. In the calculations
we use parameters a ¼ 0.005vΔ−1, α ¼ 0.05, ε0 ¼ 2Δ. (Bottom)
Time evolution of the current after a linear ramp εðtÞ ¼ ξðt − t0Þ
with parameters a ¼ 0.005vΔ−1, α ¼ 0.01, ξ ¼ 4Δ2, t0 ¼ 5Δ−1.
See insets for the corresponding time dependence of NðtÞ.
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directly to the edge. This makes them perhaps a more
promising route to the realization of single-particle sources,
although the applied voltage pulses must be fine-tuned to a
Lorentzian profile [35–37]. This setup has been studied by
Martin et al. [38–41].
It is also possible to consider a pump geometry [42–45].

In this case we must necessarily transfer exactly one
quantized charge over one period. However the effect of
the interactions is to spread the current over two pulses.
There will be a first pulse on the edge as the dot is charged
due to the Coulomb repulsion. Then there will be a second
pulse when the charge jumps from the dot onto the edge.
This second pulse will not carry the full quantized charge
due to the depletion of the edge.
From the theoretical perspective we showed how a

mapping to the spin-boson problem, and generalized
master equation solution, can be used to efficiently simulate
this interesting class of experimentally relevant nonequili-
brium interacting quantum systems.
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Plaçais, J.-M. Berroir, G. Fève, and P. Degiovanni, New J.
Phys. 13, 093007 (2011).

[4] F. D. Parmentier, E. Bocquillon, J.-M. Berroir, D. C. Glattli,
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