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X-ray magnetic circular dichroism (XMCD) studies at the Er L2;3 edges of Er3Fe5O12 exhibit a change
of the spectral shape as a function of temperature and magnetic field. Using singular value decomposition,
this variation is understood as a linear combination of two components. The dominating component is
associated with the Er magnetization, while the second contribution is identified as an induced signal from
the Fe sites. XMCD at either of the L edges in Er3Fe5O12 provides information on the net magnetization of
both sublattices. Their evolution in fields up to 30 T reveals details of the ferrimagnetic interactions on two
very different scales.

DOI: 10.1103/PhysRevLett.122.127204

Ferrimagnets play an important role for technology
as well as from a fundamental point of view. The rare
earth iron garnets (RIGs) were key in the demonstration of
molecular field theory [1], later employed in bubble
memories, microwave devices, and optical isolators, while
the rare earth transition metal intermetallics (RTIs) are used
for permanent magnets. Their desirable properties result
from details of the exchange between the magnetic con-
stituents and their respective magnetizations. A thorough
understanding of their magnetic phase diagram requires
one to probe the sublattices independently in fields that are
strong enough to compete with their interactions. Many
x-ray magnetic circular dichroism (XMCD) studies on
ferrimagnets were conducted with the aim of extracting
the sublattice magnetizations. A puzzling observation was
made when studying the rare earth’s (R’s) L2;3 edges in
both the RTIs [2–10] and the RIGs [11–13]: There often is
a sizable induced signal from the transition metal (T);
i.e., the R L-edge spectra contain information on both the T
and the R sublattice, defeating a direct interpretation of
XMCD amplitudes and integrals. Different approaches
were employed to disentangle the two spectral contribu-
tions and to investigate their origin. In some systems,
spectral features were directly attributed to the R- or
T-sublattice magnetization [3,11,12]. A better understand-
ing was obtained through the subtraction of reference
spectra from samples with a nonmagnetic transition metal
[2–10]. In the case of the RTIs, a large body of work has
established that the Tð3dÞ − Rð5dÞ hybridization is at the
origin of the induced contribution [2–10], which closely
follows the magnetism of the transition metal, and this

finding was ultimately exploited to perform element
selective magnetometry at a single absorption edge [14].
Here, we focus on the RIGs, where the interaction due to

the ferrimagnetic superexchange via the oxygen 2p orbitals
is of a different nature. Unlike previous studies, we use
singular value decomposition (SVD) for a spectral decom-
position of the XMCD signal at the Er L2;3 edges, with the
goal of isolating the rare earth behavior. We show that the
field dependence of the L-edge XMCD from Er3Fe5O12 is
described by two independent parameters. The correspond-
ing spectral components are attributed to the Er and Fe ions,
and their field dependence is associated with the sublattice
magnetizations. This allows one to study their respective
role in the saturation process through XMCD at a single
absorption edge.
In the RIGs, the magnetic ions are located at the centers

of oxygen polyhedra with different symmetries. The super-
exchange over the oxygen atoms at their vertices leads to
ferrimagnetic interactions with different strength: On one
side, the coupling between the two octahedral and three
tetrahedral Fe sites is very strong and the antiferromagnetic
alignment is broken only at the Curie temperature of
560 K or in excessively high fields. On the other side,
the interaction of the Er ions with the unbalanced Fe net
moment is much weaker yet still requires applied fields of
the order of tens of teslas to compete with the molecular
fields. Figure 1 shows a phase diagram, calculated using an
isotropic two sublattice model [15]. Er3Fe5O12 is aniso-
tropic [16], yet this simple toy model contains the essential
signatures arising from the weak interaction of the Er ions
with the net moment of the ordered Fe sites for fields
applied along the easy magnetization axis at temperatures
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around the compensation point. It comprises two ferrimag-
netic regions, a canted phase, and saturation. Outside the
upper boundary of the canted phase, the Er sublattice
behaves like a paramagnet in the local molecular field Hm
of the ordered Fe sublattices, and its magnetization dis-
appears when the latter is compensated for by an applied
field (dashed line). Below the critical temperature Tcrit
for the ordering of the Er ions, a canted phase separates the
ferrimagnetic regions from saturation. It emerges from the
compensation point and is bounded by second order tran-
sitions (solid lines).Thebulkmagnetization [Fig. 1(a)] always
rises with the field at all temperatures. Details of the
magnetizationprocess including full reversal of the individual
components and the different strength of the interactions are
expected to be revealed only in the field dependence of the
sublattice magnetizations [Figs. 1(b) and 1(c)].
XMCD at the Fe K edge shows, indeed, that the net Fe

magnetization in Er3Fe5O12 is constant outside the canted
phase, inside of which it reverses its orientation by 180°
through continuous rotation [17]. In order to obtain the full
picture, we performed XMCD at the Er L2;3 edges in fields
up to 30 Twith the aim to probe the projection of the Er net
magnetization on the applied field along relevant sections
of the phase diagram up to saturation.
Transmission experiments at the Er L2;3 edges were

performed at the energy dispersive x-ray absorption spec-
troscopy beam line ID24 at the European Synchrotron
Radiation Facility [18]. X rays were circularly polarized
using a diamond quarter wave plate in a quasinondispersive
setting with the polychromator [19]. Fields along the beam
up to 30 T were generated by a high duty cycle miniature
pulsed magnet [20], and XMCD was detected at fixed
polarization while flipping the field. The acquisition of full
energy spectra at different field values is key for the
subsequent analysis using SVD. In the present pulsed field
experiments, this was achieved through use of a multiframe

detection scheme [21] at the energydispersive beam line ID24
[18]. The sample was oriented along the 100 direction, cut,
polished, and sandwiched as a freestanding platelet between
two Si substrates with holes of 500 μm for the x-ray beam.
The assembly was mounted directly in the He flow of the
dynamic flux cryostat incorporated into the magnet system.
Figures 2 and 3 show XMCD spectra at the Er L2;3

edges for representative points in the phase diagram, and
Fig. 4 the corresponding absorption spectra (top panels).
The XMCD signal exhibits an obvious evolution of both
amplitude and spectral shape as a function of temperature
and field, making a direct interpretation of the integral or
amplitude of the spectra impossible. In order to elucidate
this change in the spectral shape, we have performed a SVD
analysis on the entire datasets at each of the L3 and L2

edges, respectively.
For the analysis, the dataset is organized in an (n ×m)

matrixA composed of n row vectors of spectra withm data
points. The singular value decomposition theorem states
that a real (n ×m) matrix A can be represented as

A ¼ USVT; ð1Þ
where the left singular (n × n)matrixU and the right singular
(m ×m)matrixV are orthogonal, andS is a (n ×m) diagonal
matrix of singular values. The columnvectors ofU andV are
the eigenvectors of AAT and ATA, respectively, and form
orthonormal bases. The diagonal elements sii of S are the
square roots of the eigenvalues ofATA, which is n times the
variance matrix of the original dataset. The normalized
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FIG. 1. Isotropic two sublattice toy model for the temperature
field phase diagram of Er3Fe5O12. Filled circle, compensation
point; dashed line, field Hm at which the Er sublattice is
demagnetized; filled square, Tcrit, Hm; solid lines, second order
transitions bounding the canted phase. (a) total magnetization.
(b),(c) Components of the Fe- and Er-sublattice magnetizations
along the applied field. The color scale is in units of the sublattice
saturation magnetizations MsFe and MsEr.
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FIG. 2. XMCD at the Er L3 edge below and above the
compensation temperature. (a) 66 K. (b) 95 K. Dots, raw data
for selected spectra acquired during the falling part of the field
pulse; black line, reconstruction of the data using only the two
dominating contributions shown as shaded areas; green, contri-
bution associated with the Fe sublattice; orange, contribution
associated with the Er sublattice.
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squares of the singular values s2ii=trðSSTÞ therefore quantify
the relative contribution of the ith column vector of V to the
variance of the data.
Equation (1) can be interpreted as follows: The column

vectors of V provide a basis to reconstruct the original
spectra through multiplication by the coefficients or projec-
tionsUS, with the singular values s2ii quantifying the relative
importance of a given basis vector for the reconstruction.
If the dataset is entirely uncorrelated, all eigenvectors are
required for its reconstruction. In a highly correlated dataset,
however, considering the hierarchy of the singular values

and the shape of the corresponding basis vectors allows one
to identify and keep only the relevant spectral components,
while discarding those representing mainly noise. This
provides us with three important opportunities: First, the
hierarchy of singular values allows one to determine the
number of independent parameters that can be obtained from
the dataset; second, SVD provides an orthonormal basis to
reconstruct the spectral shapes; and third, a reconstruction
taking only the dominating components into account reduces
the noise by exploiting correlations across the dataset.
The fundamentals of SVD are found in Ref. [22], and its
application to gene expression is discussed in Ref. [23].
We have applied SVD to datasets at the L2;3 edges below

and above the compensation point. See the Supplemental
Material [24] for details on the procedure. At the L3 edge
(L2 edge) 92.5% (89.5%) of the variance is accounted for
by the first two eigenvectors, while all others contribute
less than 0.7% (3%) each. In both cases, only the first two
eigenvectors shown in Fig. 4 exhibit spectral features
beyond noise and are compatible with the energy reso-
lution. It is important to realize, however, that both the
singular values and the actual spectral shape of the basis
vectors are determined by the composition of the dataset
and not by the underlying physics. Any other orthogonal
basis and corresponding set of coefficients obtained through
rotations R of the (new reduced) basis and corresponding
coefficients are equivalent, and additional knowledge is
required to determine appropriate rotations R, so that the
eigenvectors represent physical spectra (XMCD), and the
coefficients US meaningful quantities (magnetizations).
In view of the large body of work on the R-T inter-

metallics and preliminary results on the RIG’s, we tenta-
tively assigned the eigenvectors and the field dependence of
the coefficients to the Er and Fe sublattices, respectively. In
order to determine the appropriate rotation R, we used the
knowledge that the Fe-sublattice magnetization is constant
and independent of field above the compensation point
[17]. Figure 4 shows the resulting basis spectra for rotations
of −2° at the Er L3 edge and 1° at the Er L2 edge, and Fig. 5
the corresponding field dependences. The shape of the
Fe-like spectra is very similar to those reported at the Lu L
edges in Ref. [13] for mixed Yb, La, Lu garnet films, while
the shape of the Er-like component is similar to those
observed in paramagnetic R oxides. In Figs. 2 and 3, the
reconstruction using only two components is plotted as a
black line along with the original data for selected spectra.
The individual contribution of the Er-like (orange) and
Fe-like (green) components are shown as shaded areas.
Figure 5 shows the coefficients US for the two components
of V as a function of field for the entire datasets along with
simulations using the two sublattice model. For this purpose,
the simulations were multiplied by a scaling factor, yet
there is only a single scaling for each component and edge
for both temperatures. The very good agreement between
the Fe signal and the simulation on one side, and with
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FIG. 3. XMCD at the Er L2 edge below and above the
compensation temperature. (a) 70 K. (b) 79 K. Dots, raw data
for selected spectra acquired during the falling part of the field
pulse; black line, reconstruction of the data using only the two
dominating contributions shown as shaded areas; green, contri-
bution associated with the Fe sublattice; orange, contribution
associated with the Er sublattice.
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FIG. 4. Absorption spectra and singular value decomposition
used for the interpretation of the XMCD data at the Er L2;3 edges.
(a) Er L3 edge. (b) Er L2 edge. Orange, Er-like component; green,
Fe-like component. The lines are guides for the eye.
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previous work [17] on the other side, confirms the working
hypothesis that the induced signal follows the net magneti-
zation of the Fe sublattices. The field dependence of the
coefficients of the dominating component is also in excellent
agreement with simulations of the projection of the Er
magnetization on the applied field, and it directly evidences
the behavior of the Er sublattices. At high temperatures,
where the Fe magnetization dominates, the Er sublattice is at
first opposite to the applied field. It gets thermally demag-
netized when the latter equals the molecular field and finally
increases again along the applied field. Below the compen-
sation point, the Er sublattices dominate and continuously
increase until reaching the canted phase, inside of which the
Er moments deflect away from the applied field to let the Fe
moments pass during their continuous rotation of 180°. We
want to point out that the current assignment is phenom-
enological and based on the assumption that changes in the
sublattice magnetizations are much larger than variations in
the ratio between spin and orbital contributions. Separating
the latter applying sum rules at theRL2;3 edges is beyond the
scope of this Letter and would require us to identify and
remove quadrupolar contributions first. Electronic structure
calculations and simulations of XMCD spectra would be
desirable for a more detailed understanding.
In conclusion, we measured XMCD at the Er L2;3 edges

in ferrimagnetic ErIG as a function of field above and
below the compensation point. Singular value decomposi-
tion was employed to analyze the evolution of both the
amplitude and the shape of the energy spectra as a function

of temperature and field. The reconstruction of the data at
both edges required a base of two spectral components.
Using the knowledge that the Fe-sublattice magnetization is
field independent above the compensation point and out-
side of the canted phase [17], we determined a base trans-
formation after which the spectra represent the Er and Fe
sublattices, and the field dependence of their amplitudes the
sublattice magnetizations. The Er-like component is similar
to spectra of paramagnetic rare earth oxides,while theFe-like
contribution has the shape of the induced XMCD signals at
the LuL edges reported formixed garnet films [13]. The field
dependences of the two components are in excellent agree-
ment with a simple isotropic toy model for the sublattice
magnetizations and previouswork at the FeK edge [17]. The
result illustrates ferrimagnetism on two very different scales:
On the one hand, the coupling between the octahedral and
tetrahedral Fe sites is so strong that their net magnetization is
basically independent of field and temperature, and it rotates
by 180° within the canted phase. The Er sublattice, on the
other hand, is weakly coupled to the latter. We evidence two
characteristic features resulting from this hierarchy of inter-
actions that are not accessible to laboratory methods: (i) the
thermal demagnetization and reversal of the Er-sublattice
magnetization above the compensation point, and (ii) the
deflection of the Er moments away from the direction of
the applied field concomitant with the rotation of the iron
sublattice in the canted phase below the compensation
temperature.
The application of singular value decomposition to obtain

information on both the transition metal and rare earth
sublattice magnetizations fromXMCDat a single absorption
edge rationalizes previous approaches in a more general
framework and simplifies the exploration of magnetic phase
diagrams of the vast class of rare earth–transition metal
compounds. In a further application, we have used SVD to
study the Ho and Fe sublattices in highly anisotropic
HoFe5Al7 [25], where it was possible to observe both
sublattices at either the Fe K or the Ho L2 and L3 edges.
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