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Polarized inelastic neutron scattering experiments recently identified the amplitude (Higgs) mode in
C9H18N2CuBr4, a two-dimensional near-quantum-critical spin-1=2 two-leg ladder compound, which
exhibits a weak easy-axis exchange anisotropy. Here, we theoretically examine the dynamic spin structure
factor of such planar coupled spin-ladder systems using large-scale quantumMonte Carlo simulations. This
allows us to provide a quantitative account of the experimental neutron scattering data within a consistent
quantum spin model. Moreover, we trace the details of the continuous evolution of the amplitude
mode from a two-particle bound state of coupled ladders in the classical Ising limit all the way to the
quantum spin-1=2 Heisenberg limit with fully restored SU(2) symmetry, where it gets overdamped by the
two-magnon continuum in neutron scattering.
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A central aspect of current research in quantummagnetism
is the exploration of emerging phases and quantum phase
transition and the associated collective excitations of quantum
matter. For one of themost fundamental ordering phenomena
in quantum magnetism—antiferromagnetism from sponta-
neous SU(2) spin symmetry breaking—the collective exci-
tations can be characterized as fluctuations in the phase
and the amplitude of the order parameter field. The phase
oscillations correspond to low-energy magnon modes, i.e.,
gaplessNambu-Goldstone bosons,which are readily detected
in inelastic neutron scattering (INS) experiments.However, in
low-dimensional systems, for which quantum fluctuations
prevail, the Higgs mode, associated to the amplitude fluctua-
tions, is prone to decay into pairs ofNambu-Goldstonemodes
[1–3]. In low-dimensionalmagnets, theHiggsmode thus gets
strongly masked by this coupling to the two-magnon con-
tinuum, which makes its detection formidable by magnetic
probes such as INS [4,5]. However, near-quantum-critical
systems were recently found to be advantageous for the
detection of the Higgs mode in 2D systems via its response in
scalar susceptibilities as opposed to the magnetic response
accessed in, e.g., INS experiments [1,2,6–10].
A feasible route towards the observation of the Higgs

mode in near-quantum-critical low-dimensional magnets
was explored in a recent INS study [11] of the layered
system of coupled spin ladders in the metal-organic
compound C9H18N2CuBr4, abbreviated as DLCB. In this
compound, the spin-1=2 degrees of freedom on the Cu2þ
ions experience a weakly anisotropic, easy-axis spin-
exchange interaction [12]. This anisotropy gaps out the
two-magnon scattering continuum sufficiently above the
spectral support of the lower-lying Higgs mode, which
acquires an infinite lifetime. The Higgs mode can thus be

identified by spin-polarized INS through the longitudinal,
(non-spin-flip) channel, where the neutrons’ polarization is
vertical to the scattering plane, separated from the magnon
branch in the transverse (spin-flip) channel [11]. A 2D
array of coupled spin ladders furthermore exhibits a line of
quantum critical points in a parameter regime that separates
the antiferromagnetic ground state from the quantum
disordered regime at weak interladder coupling [13].
Being located near such a quantum critical point, a
quantitative theory of the quantum spin dynamics in
DLCB requires an approach that accounts for both the
enhanced quantum critical fluctuations as well as the subtle
energetics of the weakly anisotropic exchange.
Here, we demonstrate such a quantitative theoretical

characterization of the quantum spin dynamics in coupled
spin ladders with anisotropic exchange:Given the absence of
geometric frustration in the exchange geometry derived for
DLCB [11,12], an unbiased approach for calculating the
dynamic spin structure factor (DSF) is shown to be feasible
using state-of-the-art quantum Monte Carlo (QMC) meth-
ods. In addition to modeling the INS experiments on DLCB,
we harness the QMC approach in order to systematically
examine the evolution of the magnetic excitations from the
isotropic (Heisenberg) limit with its full SU(2) symmetry,
down to the Ising-model limit for dominant easy-axis
exchange. The Higgs mode, which becomes overdamped
in the Heisenberg limit, then connects to a gapped two-
magnon bound state in the Ising-model regime. In contrast,
for weakly coupled ladders, the same mode instead con-
denses, and gives rise to a quantum disordered phase.
In the following, we consider as a minimal model [12]

for DLCB the quantum spin-1=2 Hamiltonian of a 2D array
of coupled two-leg spin-ladders,
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where i indexes the ladders, r the rungs, and l ¼ 1, 2 the
two legs of each ladder. Jinter denotes the nearest-neighbor
interladder coupling, and Jleg (Jrung) the intraladder cou-
plings along the legs (rungs), respectively (cf. the inset of
Fig. 1). Furthermore, λ is the exchange anisotropy, with
0 ≤ λ < 1 in the easy-axis regime, which is considered
equal among all exchange interactions [12]. The
Heisenberg limit is recovered at λ ¼ 1, while for λ ¼ 0,
H reduces to a classical Ising model. An explicit constraint
on the parameters in Eq. (1) for DLCB follows from its
magnetic saturation field of Hsat ≈ 16 T, i.e.,

1þ λ

2
ðJrung þ 2Jleg þ JinterÞ ¼ gμBHsat ≈ 1.96 meV; ð2Þ

based on a value of g ¼ 2.12 [14]. From comparing the
low-temperature INS spectra to magnon dispersions
obtained within a perturbative continuous unitary trans-
formation (PCUT) approach, Ref. [12] reports the best-
fit values Jrung ¼ 0.64ð9Þ meV, Jleg ¼ 0.60ð2Þ meV,
Jinter ¼ 0.19ð2Þ meV, and λ ¼ 0.93ð2Þ. These parameters
position DLCB close to quantum criticality, where the
long-range antiferromagnetic order along the easy-axis
direction vanishes: In the Heisenberg limit (λ ¼ 1) for
spatially isotropic ladders (Jrung ¼ Jleg), this quantum
critical point is located at a critical ratio of Jinter=Jleg ¼
0.314 07ð5Þ [13]. The value of λ < 1 is in accord with the

constraint in Eq. (2), and accounts for the finite excitation
gaps ΔTM ¼ 0.33ð3Þ meV and ΔLM ¼ 0.48ð3Þ meV, esti-
mated in polarized INS for the transverse magnon mode
(TM) and the longitudinal Higgs mode (LM), respectively
[11]. A finite ΔTM not only renders the Nambu-Goldstone
mode from the isotropic case massive, it also leads to a
minimum excitation energy of 2ΔTM for the two-magnon
continuum. For ΔLM < 2ΔTM, the Higgs mode is protected
against decay into the two-magnon continuum, thus
allowing for its identification in the longitudinal scattering
channel [11]. The theoretical modeling of the INS data in
this configuration was performed in Ref. [11] using bond-
operator theory in harmonic approximation [15,16].
However, within this mean-field treatment, the comparison
to the experimental data required a substantial renormal-
ization of the exchange couplings in the Hamiltonian of
Eq. (1), up to factors of almost 2, compared to the values
quoted above. This calls for an unbiased, consistent
theoretical understanding of the INS results on DLCB,
which applies to both scattering channels, and also
accounts for the critically enhanced quantum fluctuations.
For this purpose, we analyzed the DSF of the

Hamiltonian H using a combination of QMC sim-
ulations [17–20] and a stochastic analytical continuation
scheme [21] in order to access the frequency-dependent
spectral functions from imaginary-time correlation functions
obtained by the QMC calculations. We thereby obtain the
DSF for both the longitudinal channel, SLðk;ωÞ ¼R
dte−iωthSzkðtÞSz−kð0Þi, aswell as for the transverse channel,

STðk;ωÞ ¼
R
dte−iωthSþk ðtÞS−−kð0Þ þ S−k;ðtÞSþ−kð0Þi [22].

Here, Sk ¼ ð1= ffiffiffiffi
N

p ÞPie
−ik·riSi, and N denotes the number

of spins, with N ¼ 2LLr in terms of the number of ladders
(L) and rungs per ladder (Lr), with periodic boundary
conditions taken in both lattice directions (the unit cell
contains two spins, cf. the inset of Fig. 1, and the extent
of the unit cell is set equal to unity in both lattice directions).
For the QMC simulations, performed using the stochastic
series expansion approach [17–19], we scaled Lr ¼ 2L and
the temperature T sufficiently low to access ground-state
properties of these finite systems [22].
Prior to focusing on DLCB, we consider the simpler case

of spatially isotropic ladders (Jrung ¼ Jleg), for which the
ground-state phase diagram in terms of the ratio Jinter=Jleg
and λ, as obtained from QMC simulations, is shown in
Fig. 1. In addition to a phase with antiferromagnetic order,
this phase diagram exhibits an extended quantum disor-
dered regime at weak interladder coupling near the
Heisenberg limit. For λ < 1, a line of quantum critical
points separates both phases, belonging to the three-
dimensional (3D) Ising universality class, in accord with
a standard finite-size scaling analysis of the antiferromag-
netic structure factor [22]. For λ ¼ 1, the quantum critical
point at Jinter=Jleg ¼ 0.314 07ð5Þ instead belongs to the 3D
Heisenberg universality class [13].
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FIG. 1. Ground-state phase diagram of a 2D array of coupled
spin-1=2 ladders with easy-axis anisotropy λ and Jrung ¼ Jleg.
Inset: 2D array of coupled ladders (L ¼ 4 ladders, Lr ¼ 8 rungs
per ladder), with a two-site unit cell as indicated.
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We now examine in detail the evolution of the DSF upon
tuning λ for Jinter=Jleg ¼ 0.228 and 0.4, i.e., on both sides of
the critical coupling ratio for λ ¼ 1. These two different
regimes are denoted as case I and II, respectively. As an
example, Fig. 2 displays the DSF for Jinter=Jleg ¼ 0.228
and λ ¼ 0.6, along the indicated path in momentum
space that includes the antiferromagnetic ordering vector
kAFM ¼ ðπ; 2πÞ. The transverse channel STðk;ωÞ is domi-
nated by the gappedmagnon excitation, with aminimumgap
ΔTM ≈ 1.1Jleg at kAFM. This sets the lower threshold for the
two-magnon continuum to 2ΔTM ≈ 2.2Jleg. Besides the
magnetic Bragg peak at kAFM, SLðk;ωÞ exhibits an addi-
tional, pronounced dispersing mode at energies significantly
below 2ΔTM, and with a corresponding minimum gap of
ΔLM ≈ 1.3Jleg at kAFM. Its origin becomes explicit in the
Ising limit: For λ ¼ 0, the ground states are perfect Néel
configurations, and a single spin flip costs an excitation
energy ΔTM ¼ ðJrung þ 2Jleg þ JinterÞ=2. A bound state
of two nearest-neighbor spin flips along an intraladder
bond (for Jrung ¼ Jleg > Jinter) requires an energy ΔLM ¼
2Jleg þ Jinter, which falls below the excitation energy 2ΔTM

for two isolated spin flips. The transverse exchange for finite
values of λ renders these modes dispersive, thereby reducing
both excitation gaps.
From QMC data such as in Fig. 2, we extract the full λ

dependence of both gaps in the thermodynamic limit [22],
cf. Fig. 3. Also shown in this figure are series expansion
results [11,22,24] up to order λ2 (λ8) for ΔLM (ΔTM), which
closely follow the QMC data up to intermediate values of λ.
For case I, at Jinter=Jleg ¼ 0.228 [Fig. 3(a)], we identify the
quantum critical point at λc ¼ 0.964ð2Þ, where ΔLM closes.
ΔTM stays finite across the transition, exhibiting an inflec-
tion point. While in the antiferromagnetic regime, λ < λc,
the LM mode connects to a two-spin-flip bound state of the
Ising limit, it forms the Sz ¼ 0 sector of the gapped triplon
mode in the quantum disordered regime, which is degen-
erate with the TM mode of the transverse branch in the
Heisenberg limit. The LM mode resides below the two-
magnon continuum of energies above 2ΔTM for all λ. For
case II, at Jinter=Jleg ¼ 0.4 [Fig. 3(b)], the antiferromagnetic
regime extends up to the Heisenberg limit, in which the TM
gap closes. The softening of ΔTM affects the LM mode to
merge into the two-magnon continuum, which we locate to
occur at λm ¼ 0.96ð2Þ. Beyond this point, the detection of
the Higgs mode is masked by the two-magnon continuum.
Close to quantum criticality and in the Heisenberg limit
(λ ¼ 1), one may nevertheless detect the Higgs mode
through the scalar susceptibility in terms of the rung-based
dynamic singlet structure factor [10,25,26]. The position of
the Higgs mode from this scalar response function is also
shown in Fig. 3(b); it compares well to the energy of the
LM mode near λm.
We next return to the theoretical modeling of the INS

spectra for DLCB. Since this compound resides within the
antiferromagnetically ordered regime of coupled spin
ladders, we first assess to which of the two cases (I or
II) it belongs, according to the effective description by the
model in Eq. (1). For this purpose, we performed QMC
simulations for the set of previously estimated exchange
couplings, but vary the anisotropy λ. We observe from
Fig. 4 that based on this parameter set, DLCB actually
belongs to case I; i.e., for the estimated exchange

FIG. 2. DSF of a 2D array of coupled spin ladders, (a) STðk;ωÞ
and (b) SLðk;ωÞ, for Jrung ¼ Jleg, Jinter ¼ 0.228Jleg, and λ ¼ 0.6,
along the indicated path in momentum space, obtained by QMC
simulations with L ¼ 20 at T ¼ 0.02Jleg.
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FIG. 3. Excitation gaps ΔTM, 2ΔTM, and ΔLM as functions
of λ at Jrung ¼ Jleg for (a) Jinter ¼ 0.228Jleg (case I) and
(b) Jinter ¼ 0.4Jleg (case II). Dashed lines show results from
series expansions. The triangle in (b) shows the position of the
Higgs mode for λ ¼ 1 from the dynamic singlet structure factor.
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couplings,H resides within the quantum disordered regime
at λ ¼ 1: The easy-axis anisotropy not only leads to finite
magnetic excitation gaps, it also leads out of the quantum
disordered regime. The presence of a quantum phase
transition at λc ¼ 0.989ð1Þ (detected also by the antiferro-
magnetic structure factor [22]) for this set of couplings was
not noted in Refs. [11,12], wherein PCUT-based estimates
of ΔTM were used instead. As shown in Fig. 4, this
approach does not reproduce the inflection point in ΔTM
at λc and overestimates the gap in the relevant parameter
regime. Therefore, the gap ΔTM ≈ 0.24 meV extracted
from the QMC calculations at the previously estimated
value of λ ¼ 0.93 falls below the experimental margin for
DLCB; i.e., a lower value of λ is required to match the
experimental values of the gaps for the considered
exchange coupling strengths. Agreement with the exper-
imental estimates of the gaps within their error margins can
be reached using a simple rescaling procedure: In order to
satisfy Eq. (2), a decrease in λ requires a corresponding
increase of the exchange coupling strengths. Here, we
constrain to a uniform rescaling of all exchange
constants for simplicity. Using an interpolation of the
QMC data in Fig. 4 [22], we obtain Jleg ¼ 0.619 meV,
Jrung ¼ 0.660 meV, Jinter ¼ 0.196 meV, and λ ¼ 0.871,
for which ΔTM ¼ 0.360 meV and ΔLM ¼ 0.457 meV;
i.e., both values are within the margin of the experimental
estimates. We thus spared a fit of all four parameters ofH to
the INS data, which is rather expensive based on QMC
calculations of the DSF.
Based on this consistent identification of a single set of

model parameters for DLCB, we finally performed QMC
simulations to calculate the corresponding DSF. To allow
for a direct comparison to the INS results presented in
Ref. [11], we transformed the QMC spectra [22] to the

crystal and scattering geometry for DLCB [11]. The
resulting scattering spectra along the specific wave
vector transfers considered in Ref. [11] are shown in
Fig. 5 for both polarization directions. They correspond
to the polarized INS data shown in Fig. 4 of Ref. [11]. In
addition to the excitation gaps and the overall distribution
of the spectral weight, the calculated spectra also account
for the bandwidth observed in the INS spectra in the LM
scattering channel at the zone boundary, which was
overestimated in the harmonic bond-operator theory
approach from Ref. [11].
Hence, we demonstrated the feasibility, using state-of-

the-art QMC simulation techniques, to formulate a quanti-
tative theory for the spin dynamics of near-quantum-critical
2D quantum magnets, directly exposing the two-magnon
bound-state nature of the stable Higgs mode excitation
observed in recent INS experiments on DLCB. In the easy-
axis regime, this excitation is stabilized due to the upwards-
shifted support of the two-magnon continuum, well above
the Higgs mode’s excitation gap. The Higgs mode merges
into this continuum only very close to the Heisenberg limit
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FIG. 5. Scattering spectra for DLCB as a function of energy and
wave vector transfer in the transverse (a),(b) and longitudional
(c),(d) configurations, exhibiting the TM and LM modes,
respectively. Data based on QMC simulations (L ¼ 20) of the
2D model H for the displayed parameters.
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within the antiferromagnetic regime, beyond the quantum
critical point. We anticipate that our unbiased QMC
approach provides a quantitative understanding to the
quantum spin dynamics also in other near-quantum-critical
2D magnetic compounds.
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