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We investigate the phase diagram of the Haldane-Falicov-Kimball model—a model combining topology,
interactions, and spontaneous disorder at finite temperatures. Using an unbiased numerical method, we
map out the phase diagram on the interaction-temperature plane. Along with known phases, we unveil an
insulating charge ordered state with gapless excitations and a temperature-driven gapless topological
insulating phase. Intrinsic—temperature-generated—disorder is the key ingredient explaining the
unexpected behavior. Our findings support the possibility of having temperature-driven topological
transitions into gapped and gapless topological insulating phases in mass unbalanced systems with two
fermionic species.

DOI: 10.1103/PhysRevLett.122.126601

Understanding the effects of disorder, interactions, and
temperature on topological phases of matter is essential to
predict the topological properties and their stability in real-
world materials [1]. Some of these effects are quite subtle
and may have dichotomic features. For example, topologi-
cal phases are suppressed in the presence of strong nearest-
neighbor (NN) [2] or Hubbard-like interactions [3–12].
However, interaction-induced magnetic order was found to
coexist with topological phases [13–16], and some studies
showed that interactions themselves could induce a topo-
logical phase on a trivial band, forming the so-called
topological Mott insulator [17–24]. Even if this phase
is disputed outside the mean-field scope in some models
[25–28], it has been confirmed in others [29,30].
The influence of correlations at finite temperatures

on topological insulators (TIs) also shows opposite trends
[31–34]. Although thermal fluctuations are responsible for
the destruction of topological order when large enough
[35,36], they can also drive different types of topological
phases [31,37].
The role of disorder on topological phases is also subtle.

For TIs within the unitary class [38–40] (for which time-
reversal symmetry is broken), disorder effects localize
every eigenstate except two bulk extended states that carry
opposite Chern numbers [41,42]. The merging of these
states, for a sufficiently large disorder strength, is asso-
ciated with the destruction of the topological phase.
Interestingly, a disorder-induced transition into a new
topologically nontrivial phase—the topological Anderson
insulator (TAI)—was also proposed [43–47].
In this Letter, we explore some of the dichotomic aspects

above by fully characterizing an interacting quantummodel
that crucially combines nontrivial topology, disorder,

temperature, and interaction effects and which can be
efficiently studied by unbiased numerical methods. Our
main results are summarized in Fig. 1, which depicts the
different phases as a function of the temperature T and of
the interaction magnitudeU. As a central result, topological
order was found for intermediate U values when T is

FIG. 1. Phase diagram of the HFKM in the interaction-temper-
ature plane obtained with the Monte Carlo method. Phases at
intermediate to high T, outside the CDW: TI for smallU, GTI and
gapless insulator (GI) for intermediary U, and Mott-like insulat-
ing phase (MI) for large U. Phases at low T, inside the CDW
phase: Phases with similar features as their high-T counterparts
were found, and the suffix “-CDW”was added. The thin (red) and
dashed-dotted (blue) curves correspond, respectively, to the
topological and CDW phase transitions, and the thick (green)
curve bounds the gapless region of the phase diagram. The black
squares mark the points used in Figs. 2(b)–2(d).
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increased and to extend into the gapless region of the phase
diagram at higher T, giving rise to a temperature-driven
gapless topological insulating phase (GTI).
Model.—Our starting point is the Falicov-Kimball model

(FKM) [48], a limiting case of the Hubbard model for
which one of the spin fermion species is infinitely massive,
rendering these fermions—the f electrons—immobile. For
a half-filled bipartite lattice at T ¼ 0, the f electrons order
in a charge density wave (CDW) state for any finite value of
the interaction strength between the localized and itinerant
electrons [49–52]. Recently, the full T-dependent phase
diagram of the 2D FKM was obtained, unveiling an
Anderson insulating phase overlooked in previous studies
[53]. The itinerant electrons experience a potential imposed
by annealed f-electron configurations, able to localize the
c-electron eigenstates in an explicit disorder-free setup. We
combine the interacting nature of the FKM with the
topological features of the first theoretical model of
a TI under a zero net magnetic field—the Haldane model
[54]—which, although robust to small disorder, has its
topological properties destroyed for large enough disorder
strengths [55–58].
The Hamiltonian of the Haldane-Falicov-Kimball model

(HFKM) is defined as

Ĥ ¼ −t
X

hi;ji
ĉ†i ĉj þ it2

X

⟪i;j⟫

νijĉ
†
i ĉj þ H:c:

þ U
X

i

ĉ†i ĉin
f
i −

X

i

ðμcĉ†i ĉi þ μfn
f
i Þ; ð1Þ

depicting a species of itinerant electrons (c electrons) with
creation operators ĉ†i and another of localized electrons (f
electrons) whose local density at site i is nfi . The operators
ĉ†i ¼ ĉ†i;A; ĉ

†
i;B are defined in the two interpenetrating

triangular sublattices A and B that form the honeycomb
lattice shown in the sketch in Fig. 2(a), with total volume
V ¼ 2L2, where L indicates the linear number of unit cells.
The first term is the kinetic energy of c electrons associated
with NN hoppings, with t being the hopping integral for
NN. The second term considers Haldane next-nearest-
neighbor (NNN) complex hoppings with νij ¼ �1, accord-
ing to the arrows represented in the honeycomb cell in
Fig. 2(a). The third term describes the local interaction
between localized and itinerant electrons, with U > 0. The
final term contains the chemical potentials for the itinerant
and localized electrons, respectively, μc and μf, which we
set to U=2 (half filling). In what follows, t ¼ 1 sets the
energy scale and t2 ¼ 0.1t.
Given that the f-electron densities nfi (¼ 0, 1) can be

seen as classical variables, the partition function can be
written as

Z ¼
X

fnfg
Trc½e−βĤðfnfgÞ� ¼

X

fnfg
e−βHðfnfgÞ; ð2Þ

where

HðfnfgÞ ¼ −
U
2

X

i

nfi −
1

β

X

j

ln½1þ e−βEjðfnfgÞ� ð3Þ

is the effective Hamiltonian obtained after tracing over the
c electrons’ degrees of freedom and is defined in terms of
the eigenvalues EjðfnfgÞ of ĤðfnfgÞ, corresponding to
eigenvectors jϕjðfnfgÞi, for a fixed configuration fnfg. In
this form, the model is amenable to classical Monte Carlo
sampling, since, for each configuration fnfg, the eigen-
function of the c electrons is given by a simple Slater
determinant.
Observables.—For the f electrons, we focus on describ-

ing the CDW phase transition, characterized by an order
parameter corresponding to nfst ¼ nfA − nfB, where n

f
x is the

f-electron density in sublattice x. The critical T curve
TCDWðUÞ is obtained by fixing U and computing the
intersections of the T-dependent Binder cumulant,
B4 ¼ ð1 − hnfst4i=3hnfst2i2Þ, for different system sizes as
shown in the inset in Fig. 2(a). Regarding the c electrons,
we investigate the following observables: the Chern num-
ber C, computed with the method introduced in Ref. [56];

(a) (b) (c)

(d) (e)

FIG. 2. (a) Monte Carlo results of the CDW phase transition
along with the small and largeU curves obtained with the second-
order perturbation theory [59]. The larger sites in the honeycomb
unit cell inside the CDW phase represent occupied sites indicat-
ing a checkerboard order; the arrows represent the flow of NNN
hoppings. The inset shows an example of the usage of the Binder
cumulant method to compute the critical temperature TCDW that
corresponds to the intersection of the obtained curves for different
system sizes, for a case whereU ¼ 5. (b)–(d) Density of states for
different points in the phase diagram, marked with black squares
in Fig. 1: MI-CDW ðU; TÞ ¼ ð2.5; 0.045Þ, GI-CDW (2.5,0.085),
TI (1,0.2), GTI (2,0.2), GI (4,0.2), and MI (5,0.2); we use a
Lorentzian broadening of width 0.01. (e) Finite-size scaling of the
DOS at E ¼ 0 for the point (2.5,0.085) used in (b). The DOS
(E ¼ 0) was computed in an energy window corresponding to 1%
of the full bandwidth for L ¼ 8 (smallest used system, with
volume V0). This window was reduced proportionally to the
system size for larger systems.
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the density of states (DOS), DOSðωÞ ¼ P
jhδðω−

EjðfnfgÞÞinf ; and the localization of the eigenstates,
quantified by the inverse participation ratio (IPR) or
detected by analyzing level spacing statistics (LSS). The
IPR for the jth eigenstate is I j ¼

P
rjhrjϕjðfnfgÞij4,

where hrjϕjðfnfgÞi is the amplitude of the eigenvector
at site r, and we analyze the averaged quantity
IPRðωÞ ¼ P

jhI jδðω − EjðfnfgÞÞinf=DOSðωÞ. The IPR
scales to zero with the system’s volume for extended states
and to a constant for localized states. In the LSS analysis,
level repulsion is expected for extended states, and the
spacings between energy levels assume a Wigner distribu-
tion with standard deviation σ=hsi ¼ 0.422 (for the unitary
class to which the HFKM belongs), where hsi is the
average value of the distribution of level spacings s; for
localized states, the level spacing distribution acquires a
Poisson-like shape with a larger σ=hsi [66]. In what
follows, we describe the properties of the different phases
in Fig. 1. A qualitatively similar phase diagram is also
predicted with a mean-field approach [59].
CDW.—Below the TCDW curve, the dashed-dotted (blue)

line in Figs. 1 and 2(a), the f electrons start ordering in a
checkerboard pattern for which only one of the sublattices
is occupied as sketched in Fig. 2(a). To better understand
the behavior of the CDW phase transition curve, we
perform a mapping to the 2D antiferromagnetic Ising
model at small and large U, and the phase transition curves
can be obtained with a perturbative analysis [59]. These
curves were computed up to second order in the perturba-
tion and are shown in Fig. 2(a) as full (red) lines. For
U ≪ 1, TCDWðUÞ ∼U2, whereas at large interactions,
TCDWðUÞ ∼U−1—the agreement with MC is remarkable.
Besides the expected trivial gapped CDW phase (MI-

CDW), as found in Ref. [53] for the FKM, the HFKM
additionally hosts a topological insulating phase with
charge ordering (TI-CDW) along with a peculiar region
of the phase diagram for which the c-electron spectrum is
gapless inside the CDW phase (GI-CDW). The former had
already been noticed in Refs. [33,67] and contrasts with the
results of the Haldane model with NN interactions for
which there is no region of coexistence between the CDW
and TI phases [2]. Figure 2(b) shows the transition between
gapped and gapless regimes in the MI-CDW and GI-CDW
phases for U ¼ 2.5 and L ¼ 16. To ensure that the GI-
CDW phase does not stem from a finite-size effect, we
compute the DOS at the Fermi energy (E ¼ 0) in an energy
window corresponding to 1% of the total bandwidth,
decreasing its width proportionally to the system size.
An example of this scaling is shown in Fig. 2(e) for a point
inside the GI-CDW phase, for which it can be seen that the
DOS (E ¼ 0) does not scale to zero.
TI and GTI.—The TI is a gapped topological phase, i.e.,

DOSðEÞ ¼ 0 for jEj < Δtop=2 and Chern number C ¼ 1,
with Δtop being the topological gap. At T ¼ 0, within the
TI-CDW, the topological insulating phase exists between

U ¼ 0 and U ¼ 6
ffiffiffi
3

p
t2 ≈ 1, the value at which the gap

closes signaling the topological transition (TT) [54]. Upon
increasing T, the topological phase extends to larger values
ofU. For T → ∞, the system can be mapped to the Haldane
model with quenched binary disorder, for which the
disorder strength was reported to enhance the topological
features [68]. In the present case, this translates to the
extension of the topological phase to the 1 ⪅ U ⪅ 2.7
region for T ≫ 1; see vertical lines in the phase diagram
(Fig. 1). Our results show that temperature effects are
responsible for an enhanced robustness of the topological
state for all temperatures, which pushes the TT to larger
values of U. The TT curve [69] is shown in Fig. 1 as a thin
continuous (red) line [70]. The transition was determined
by analyzing the finite-size scaling of the Chern number;
see Fig. 3. Although the disorder effects are not of the same
nature, a parallelism between the T-driven topological
transition and the TAI phenomenon can be drawn. While
in the latter quenched disorder is responsible for stabilizing
topological phases, in the former thermal fluctuations play
a similar role: They act as to promote an annealed disorder
that can stabilize the topological phase.
We notice in Fig. 2(c) that the topological gap existing in

the TI phase is closed in the GTI phase as one increases the
interactions but the Chern number is unchanged (C ¼ 1), as
can be seen in Fig. 3(b). For the TT from MI-CDW into the
TI phase with increasing T, the gap closes and reopens at
the transition curve. On the other hand, the TT from the
GTI into the GI phase (analyzed below) is accompanied by
the merging of the only two extended states that exist in the
spectrum and carry opposite Chern numbers.
Topological phases are robust at finite T provided the

thermal fluctuation energy kBT does not exceed the energy
separation of the extended states, as all the eigenstates in
between are localized and cannot change the Chern
number, similarly to the case of the integer quantum
Hall effect. This condition breaks down near the TT curve
in Fig. 1. However, as shown in Fig. 4(a), only slightly
away from the TT line, the extended states already have an

(a) (b)

FIG. 3. Chern number computed through averages on
Monte Carlo configurations of f electrons for different system
sizes, with fixed U (a) and T ¼ 0.2 (b). The crossing points of
these curves were used to obtain the topological transition curve
in Fig. 1.
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energy separation ΔE ≈ 4 ≫ kBT ≈ 0.1, allowing for a T-
driven TT into gapped and gapless TIs.
GI and MI.—Increasing U from the GTI phase leads to

an interaction-driven TT into a trivial gapless insulating
phase (GI). If we continue increasing U, the c-electron
spectrum acquires a Mott-like gap (MI). The corresponding
DOS within the GI and MI phases is exemplified in
Fig. 2(d). This transition resembles the one found for
the 2D FKM in Ref. [53], for increasing interactions
between an Anderson and a Mott insulator.
Gapless insulators.—We report, in Fig. 4(a), the LSS

results for the GTI and GI phases. In the GTI phase, the
standard deviation of the level spacing distributions, σ=hsi,
has the expected value for the Wigner distribution
(horizontal line) at the particular energies corresponding
to the two extended states that carry opposite Chern
numbers. Away from these particular values, and within
all the GI phase, σ=hsi raises above the Wigner distribution
prediction signaling the localization of eigenstates. The
IPR, for the GI phase, is depicted in Fig. 4(d). Around
E ¼ 0, it is almost unchanged with the system size; thus,
the corresponding states are undoubtedly localized.
However, for larger jEj values, the IPR decreases with
the system size. A finite-size analysis is shown in Fig. 4(e),
where the unit slope associated with the scaling IPR ∝ V−1

is depicted by the (red) dashed line. Nonetheless, the slopes
at different energies decrease with the system size, sug-
gesting that localization is robust for every energy in the GI
phase. These results are compatible with the following
scenario: Outside the CDW phase, spatial correlations
between f-electron occupations in GTI and GI phases

decay exponentially with a characteristic length ξ. For
distances larger than ξ, the disorder potential felt by the c
electrons becomes uncorrelated. These phases smoothly
extend to large T, for which ξ ≃ 1 and where disordered
effects become equivalent to those of a binary quenched
potential [68].
For the GI-CDW [Figs. 4(b) and 4(c)], a similar analysis

suggests that, although the eigenstates are localized around
E ¼ 0, there are also regions of extended states. Figure 4(c)
shows that the IPR becomes smaller with V for −3≲ E≲
−1 (and 1≲ E≲ 3, not shown), and Fig. 4(b) indicates that,
for two energies in this interval, the IPR indeed scales with
V−1 for the used system sizes. This is in apparent contra-
diction with results for σ=hsi (not shown), where all
energies rise above the Wigner distribution prediction
indicating that all eigenstates should be localized. These
seemingly contradicting facts can be reconciled by noticing
that, inside the CDW phase, ξ diverges and the disordered
potential experienced by the c electrons becomes long-
range correlated. In two dimensions, systems with long-
range spatially correlated disorder have been shown to
support spectral regions of extended states [71–73]; more-
over, Wigner distribution predictions are expected not to
hold for such a kind of disorder.
Figure 1 shows that the GI-CDW phase is created,

starting from the T ¼ 0 gapped CDW, by increasing T.
Our results show that the gap starts being populated by
localized states induced by the thermal fluctuations. Here,
again, disorder is correlated and may support extended
states for a finite disorder strength. The important question
is whether a region of extended states still survives upon
entering the GI-CDW phase or if all states are already
localized for this value of T. Although our results strongly
suggest the former, we cannot definitely exclude the latter
scenario, which will require working with substantially
larger system sizes. If confirmed, the coexistence of
spectral regions of extended and localized states would
correspond to an interesting example of a many-body
mobility edge in a strong interacting system and may
suggest similar phenomena for a finite mass ratio between
electronic species.
It is worth noting that the transverse conductance is

quantized in the topological phases away from the
crossover lines when the distance between the isolated
extended states becomes larger than kBT. This is because,
in the gapless localized phases, since the model does not
account for inelastic relaxation processes, the conductivity
vanishes in the thermodynamic limit. For the gapped
phases, the conductivity is exponentially suppressed σ ∼
expð−Δ=kBTÞ as long as the gap Δ is larger than kBT.
Summarizing the central result of our work, we introduce

the HFKM model, allowing one to effectively study the
interplay of topology and interactions at finite temperatures
and provide a complete characterization of the phase
diagram. We observe a temperature-driven topological

(a) (c) (d)

(b) (e)

FIG. 4. (a) Standard deviations of the LSS distributions
obtained for different energies in the GI [GTI] phase for ðU; TÞ ¼
ð2; 0.1Þ [¼ ð3.5; 0.2Þ] and L ¼ 14. The horizontal (red) line
corresponds to σ=hsi ¼ 0.422, which is the standard deviation of
the Wigner distribution associated to extended states. The two
extended states existing in the GTI phase are marked with arrows.
(b) [(e)] Finite-size scaling of the IPR with the system volume V
for the energies marked with the arrows in (c) [(d)], that shows the
IPR for different sizes in the GI-CDW [GI] phase for ðU; TÞ ¼
ð2.5; 0.085Þ [¼ ð3.5; 0.2Þ]. The IPR shown in (c) [(d)] for
negative (positive) energies is symmetric in E. The red dashed
lines shown in (b),(e) have a unit slope and indicate the scaling
IPR ∼ V−1. The colors of the arrows that select specific energies
in (c) [(d)] match the corresponding scaling curves in (b) [(e)].
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transition into gapped and gapless topological insulators;
finally, we find an insulating charge ordered state with
gapless excitations where spectral regions of extended and
localized states seem to coexist due to the long-range nature
of the interaction-induced disorder potential.
All the ingredients for the experimental realization of the

HFKM with ultracold atoms in optical lattices are sepa-
rately available: There are recent implementations of mass
unbalanced fermions [74,75], and the Haldane model has
recently been successfully realized [76]. A direct verifica-
tion of our results should therefore be achievable with state-
of-the-art technology.
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