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Understanding singularities in ordered structures, such as dislocations in lattice modulation and solitons
in charge ordering, offers great opportunities to disentangle the interactions between the electronic degrees
of freedom and the lattice. Specifically, a modulated structure has traditionally been expressed in the form
of a discrete Fourier series with a constant phase and amplitude for each component. Here, we report atomic
scale observation and analysis of a newmodulation wave in hole-doped LuFe2O4þδ that requires significant
modifications to the conventional modeling of ordered structures. This new modulation with an unusual
quasiperiodic singularity can be accurately described only by introducing a well-defined secondary
modulation vector in both the phase and amplitude parameter spaces. Correlated with density-functional-
theory (DFT) calculations, our results reveal that those singularities originate from the discontinuity of
lattice displacement induced by interstitial oxygen in the system. The approach of our work is applicable to
a wide range of ordered systems, advancing our understanding of the nature of singularity and modulation.
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Symmetry breaking in quantum states is one of the
central topics in modern condensed matter physics and is
widely considered to be the driving force of emergent
properties such as high-temperature superconductivity
(HTSC), colossal magnetoresistance, and topological
behavior [1–6]. Often, symmetry breaking in quantum
states results in electronic and lattice modulation, e.g.,
charge and/or spin density wave [7,8], charge order (CO)
[9], and periodic lattice displacement (PLD) [10]. It is well
known that the characterization of those modulations plays
a key role in the extensive research endeavor of exploring
quantum states and establishing a structure-property rela-
tionship in correlated materials [10–12]. Because of the
intimate coupling among charge, spin, orbital, and lattice,
modulations in quantum states can be very complicated,
challenging the existing methodology for both probing and
comprehending their nature [1,4]. In particular, modula-
tions in crystals arise from not only periodicity but also
discreteness in the arrangements of constituent electrons
and ions. Lacking accurate description of the modulation
would lead to an incomplete understanding, preventing us
from delving into the underlying physics.
Mathematically, collective phenomena of many quantum

states or a structural modulation can be depicted by a
complex order parameter, which is usually expressed as a
wave function that can be expanded in the form of a
discrete Fourier series [13–15]. In general, the phase and

amplitude for each Fourier component are all constants
regardless of whether the wave periodicity is commensurate
or incommensurate [13–16]. The simplest case of a wave
with single wave vector q is illustrated in Fig. 1(a) for a
one-dimensional modulation. Increasing dimensions in the
wave vector space (multiple q) only adds independent
Fourier components, leaving the phase and amplitude of
each q vector constant [13]. Nevertheless, in reality, a long-
range modulation can be easily disrupted by singularities in
the material, which could come from defects in the crystal
lattice, like edge dislocation and antiphase boundary
[17,18], and/or discontinuities in electronic structures,
e.g., extra charge localization at individual ions [12,
19–21]. Consequently, the constant phase and amplitude
in the modulation wave can be broken, which induces
variations, such as topological phase defects and solitons
[12,20–23]. A singularity in the phase of modulations, i.e.,
a phase shift, is presented in Fig. 1(b). Those singularities
may vary the correlation length (e.g., forming domains
depending on the dimensionality) and can substantially
modify physical properties [24]. The distribution of phase
singularities can be random or periodic in real space as a
result of competing energies in the system. In the case of
periodically distributed phase singularities, a new wave
vector q can be given for singularities in addition to
the wave vector q of the modulation. These two q vectors
are in principle independent; however, to date, only one
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experimental observation has been reported for a case with
two q vectors along the same direction, and the modulation
amplitude remains unchanged [20]. All the above works
suggest that modulations may exist with additional degrees
of freedom in both phase and amplitude parameter spaces
in a variety of materials. Understanding these modulations
would advance our knowledge on the structural origin of
properties, and the modified phase and amplitude may
assist in the interpretation of the entanglement in quantum
materials.
In this Letter, we present a study of an emergent

modulation in a hole-doped CO system LuFe2O4þδ (δ is
around 0.15) using advanced scanning transmission elec-
tron microscopy (STEM). The finding is schematically
illustrated in Fig. 1(c); i.e., the phase and amplitude are
characterized to be associated with a well-defined secon-
dary wave, being a function of the second-order modulation
vector (qs) and position vector (r). Indeed, this can be
considered as a universal expression of an order parameter,
which might be applicable to diverse ordered systems.
Insight from this work may also shed light on deciphering
how the doped holes entangle with charge and lattice that
determines many emergent quantum states in materials.
LuFe2O4 is a model system with room-temperature CO.

It has triangular bilayers of FeO5 bipyramids sandwiched
between Lu-O layers along the c direction [Fig. 2(a)] and
space group R3̄m [25–27]. An equal amount of Fe2þ and
Fe3þ ions on the triangular lattice forms the charge

frustration due to energy degeneracy [28], depending on
the excess of electron or hole on the third triangular corner
[Fig. 2(a), lower panel]. This arrangement makes its ground
states highly susceptible to charge fluctuations, composi-
tion, and temperature, leading to structural flexibility and
chemical sensitivity [29–31]. Many interesting diffraction
patterns have been observed and a series of intermediate
states can be obtained upon doping [29–32], which there-
fore make it a very suitable platform for achieving and
exploring emergent modulations.
Figure 2(b) shows an electron diffraction pattern (EDP)

along the [100] zone axis of the hole-doped LuFe2O4þδ.
Apart from fundamental spots, a constellation of satellite
reflections that are absent in the stoichiometric sample
(δ ¼ 0, Fig. S1 [33]) is observed, suggesting a modulated
structure. Detailed inspections of EDP [Fig. 2(c)] reveal
that sharp satellite reflections align well along the
g1 ¼ ½027�� direction [we hereafter refer to this as primary
modulation (PM) spots, indexed as (hkl;m1; 0)], which can
be characterized by an incommensurate modulation wave
vector qp (∼0.135g1). Importantly, it is noted that each PM
spot is accompanied by a second-order modulation (SOM)
spot [indexed as (hkl;m1; m2) with m1 ¼ m2 ¼ �1] run-
ning along the g2 ¼ ½017̄�� direction, marked as qs
(∼0.110g2) in Fig. 2(c). This scenario manifests a marked
difference from the traditional two-dimensional modulation
[13,15,16], where two sets of first-order modulation spots
appear both around fundamental spots.
To unravel this emergent modulation, quantitative analy-

sis of the atomically resolved high-angle annular dark-field
(HAADF) STEM image [Fig. 2(e)] was conducted using a
peak-pair algorithm (Supplemental Material Part 1 [33])
[39]. PLD maps of Lu along vertical [001] [Fig. 2(f)] and
horizontal [120] directions (Fig. S2 [33]) were acquired.
The most prominent feature is that the stripes of positive
and negative displacement alternatively distribute along
the ½027�� direction, yielding a periodicity of around
10 Å, consistent with PM spots (λ ¼ 1=jqpj ≈ 10.2 Å).
Displacement vectors in Fig. 2(g) follow a serpentine curve
along the qp direction, which generates a sinusoidal PM
wave as demonstrated in the displacement line profile
[Fig. 2(h)]. It is noteworthy that in PLD maps [Fig. 2(f)
herein and Fig. S2 in Supplemental Material [33]] positive
and negative displacement stripes are not well aligned but
periodically glide along the ð017̄Þ plane, indicated by the
white dashed lines. Its periodicity is about 20 Å, which is
consistent with SOM spots (λs ¼ 1=jqsj ≈ 20.89 Å). As
revealed by the line trace [Fig. 2(h)], this glide is caused by
the singularity in the PM wave phase, i.e., a phase shift,
Δϕ ¼ 2πd=λ ≈ 0.17ð2πÞ. Periodic singularities generate a
modulated phase along the qs direction, yielding a SOM.
The same observation is reproduced by rotating the scan-
ning direction 90 deg during the image acquisition (Fig. S3
[33]), thus ruling out the possible artifacts. Further inspec-
tions of PLD maps and line profiles reveal that the

FIG. 1. Illustrations of different types of modulation. (a) Tradi-
tional modulation (single wave vector q). Both phase (ϕ0) and
amplitude (A0) are constants. (b) A singularity in the modulation
phase, i.e., a phase shift (Δϕ), generates phase variations with
position vector (r). (c) Second-order modulation. Phase and
amplitude are modulated by a secondary wave, being a function
of second-order modulation wave vector (qs) and position
vector (r).
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amplitude of PM also varies with position vector (r) and
forms an oscillation, indicated by envelope curves in
Fig. 2(h). The amplitude minima occur at the positions
where phase singularity takes place. This situation is
consistent with the previous theoretical prediction that
the modulation amplitude collapses at phase deformations
to prevent divergence of energy density [40,41].
In general, PLDs can be depicted by a complex order

parameter, which can be mathematically expanded in the
form of a discrete Fourier series with a constant phase and
amplitude for each component [13–16]. Traditionally, for a
double-q case (q1, q2), the displacement (u) of atom μ can
be represented by

uðμ; rμÞ ¼ Aμ
1 sin½2πðq1 · rμ þ ϕμ

1Þ�
þAμ

2 sin½2πðq2 · rμ þ ϕμ
2Þ�: ð1Þ

rμ ¼ Tþ rμb is the position vector with the lattice vector (T)
and the position of atom μ in the basic structure (rμb).

A1,A2 and ϕ1, ϕ2 are amplitudes and phases for q1 and q2,
respectively, which are independent and constants. In our
case, although there also exist two q vectors (qp, qs), an
attempt to describe the modulation using the above formula
leads to a failure (Supplemental Material Part 2 and Fig. S4
[33]). According to experimental observations, a new type
of modulation wave is defined,

uðμ; rμÞ ¼ Aμ
pðqs; rμÞ sinf2π½qp · rμ þ ϕμ

pðqs; rμÞ�g; ð2Þ

with Aμ
pðqs; rμÞ ¼ Bμ

s þAμ
s sin½2πðqs · rμ þ ϕμ

sÞ� and
ϕμ
pðqs; rμÞ ¼ 0.17 × Integerðqs · rμÞ. Bμ

s , A
μ
s , and ϕμ

s are
constants. Compared with Eq. (1) that has Fourier terms for
q1 and q2 separately, there exists only a Fourier term for
PM (qp). More importantly, the phase and amplitude of PM
are modulated by a SOM wave instead of being constants
and become a function of SOM wave vector (qs) and
position vector (r). In this way, PM (qp) and SOM (qs) are

FIG. 2. Second-order incommensurate modulation. (a) The left-hand side of the upper panel demonstrates the three-dimensional
rhombohedral structure of LuFe2O4, and its projection along the a axis is shown on the right-hand side. Lower panel illustrates charge
frustration. (b) [100] zone axis EDP with a series of satellite reflections. (c) Close-up of region marked in (b). Two vectors, qp (∼0.135g1)
and qs (∼0.110g2), are assigned for PM and SOM spots, respectively. (d) Simulated EDP considering both PM and SOM [Eq. (2)]. The
fourth (m1) and fifth (m2) index correspond to qp and qs, respectively. (e) HAADF-STEM image along the a axis. Spacings of the
parallelogram correspond to real-space distances of qp and qs. d1 and d2 are (027) and ð017̄Þ planar distance, respectively. (f) PLD map
along the [001] direction. Periodic phase shift occurs at ð017̄Þ planes, indicated by the broken white lines. (g) Displacement vector map of
Lu extracted from delimiters-framed area in (f). An enlargement of the marked section is shown. Arrows follow displacement directions.
Arrow length and color-coded background represent the amplitude. (h) Displacement line profile along qp marked in (f), showing the
phase shift (Δϕ ¼ 2πd=λ) and amplitude oscillation, outlined by envelope curves. All scale bars are 2 nm.
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intertwined, and their essential nature differs from the
traditional two-dimensional modulation [13]. Based on
Eq. (2), systematic simulations using the Bloch-wave
method can well reproduce experimental observations
in both reciprocal and real space (Fig. 2(d) herein and
Fig. S4(d) in Supplemental Material [33]).
Apart from this harmonious SOM, randomly distributed

nascent topological defects, like phase dislocations, were
also observed (Fig. S5 [33]). Such phase defects have been
previously reported in, e.g., charge-ordered manganites
[12,21,24], which could come from impurities, elastic
strain, and/or discontinuities in electronic structures
[41,42]. Serving as pinning centers, they can break the
long-range ordering of SOM, which accounts for the
diffuse nature of SOM spots in our experiments.
As the PLDs are essentially generated by the modulation

of charge density via charge-lattice coupling, this SOM has
its origin in the abnormal charge distributions caused by
doped holes. The hole doping nature was confirmed in
Fig. S6 [43]. Charge modulation was further attested using
atomically resolved electron energy-loss spectroscopy
(EELS). It is well known that features of L2;3 edges,
including shape [47], position [48,49], and L3=L2 ratio
[34,50], serve as fingerprints for the transition metals’
valency. Spectroscopic data of Fe-L2;3 edges and the
HAADF-STEM image were simultaneously acquired pixel

by pixel [Fig. 3(a), inset]. The spectrum image clearly
shows the atomic Fe sublattice, manifesting the high spatial
resolution achieved to investigate individual Fe columns.
Figure 3(a) demonstrates three postprocessed Fe-L2;3 edges
from sites A─C. Since the higher energy of the edge onset
and the L3=L2 ratio for Fe correspond to higher oxidation
states (below Fe3þ) [34,49,50], the valence increases
monotonically from site C to site A. We then extracted
all L3=L2 ratios, color coded and overlaid on the Fe
sublattice [Fig. 3(b)]. Clear charge oscillations are visua-
lized, which can be well fitted by a series of (027) and
ð017̄Þ planes with a periodic phase shift (Δϕ). The
integration of L3=L2 ratios at each (027) plane along the
qp direction [Fig. 3(c)] further confirms such a phase shift,
yielding Δϕ ≈ 0.20ð2πÞ. This is consistent with structural
modulation wave [Fig. 2(h)] and diffraction calculations
[Fig. S4(d) [33]]. We note that measurements of L3=L2

ratios have rather large error bars, which may come from
the well-documented effects, such as inelastic delocaliza-
tion and probe broadening [51–53]. Deviation from the
model may be related to the small imperfection of the area
and/or the random error in measurement. These observa-
tions manifest the quasiperiodic singularity in the phase of
charge modulation, which accounts for the discontinuities
of PLDs and can also be well described by the SOM
defined in Eq. (2).
Previous studies on HTSCs suggested that local struc-

tural features and changes in carrier density for super-
conductivity depend on interstitial oxygens (Oi) [10].
Therefore, to unravel the origin of this charge-lattice
SOM, the most stable Oi position in the LuFe2O4þδ unit
cell was determined by DFT calculations (Supplemental
Material Part 3) [54]. Because of the c-axial layered
structure, considering possible interstitial sites in one
stacking block is sufficient (Fig. S7 [54]). Typical inter-
stitial sites are labeled with A─E in the a-b plane [Fig. 4(a),
left-hand panel] and each with different z positions,
indicated by vertical lines (right-hand panel). For each
site, ground state energies are calculated as a function of
z position and the potential-energy surface is obtained
[Fig. 4(b)]. To minimize the influence of Oi-Oi coupling,
we take the lowest energy as reference and compare the
relative total energy. It is found that site A is energetically
favorable for all z positions due to the largest void volume.
Among all the A sites (different z positions), one particular
site, denoted as site A0 (z=c ¼ 0.7816), has the shortest
Fe─Oi bond length and the lowest energy. Importantly, this
site resides right at the junction of two edge-sharing planes
of FeO5 cages [Fig. 4(b), inset], which is the intersection of
the (027) and ð017̄Þ planes.
Combing the calculations with experiments, a possible

mechanism for SOM is proposed [Fig. 4(c)]. Based on PLD
and charge mapping results, a mesh consisting of a series
of (027) and ð017̄Þ planes was drawn to translate (027)
planes passing through the lowest-energy Oi. Since ionic

FIG. 3. EELS characterizations showing charge discontinuity.
(a) EELS spectra at sites A–C extracted from the atomically
resolved spectrum image of Fe-L2;3 edges in the inset. (b) Color-
coded Fe-L3=L2 ratios extracted from each atomic column in
spectrum image. Mesh spacings correspond to real-space dis-
tances of qp and qs. (c) Integration of L3=L2 ratios at each (027)
plane at the arrow position in (b). Experimental data can be fitted
by two sinusoidal waves with a phase shift (Δϕ). Scale bars
are 1 nm.
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displacements are essentially caused by Oi, their magnitude
reaches a maximum at the Oi site and damps down with the
increase in distance. Consequently, it yields periodic
displacement damping curves (yellow for phase 1, blue
for phase 2) along the (027) plane. As two damping curves
cannot merge at the ð017̄Þ plane, a glide operation forms
that generates phase discontinuities and amplitude oscil-
lations in the PM. Meanwhile, local electronic structure and
charge density are also modified by Oi, as revealed by
EELS results. In this picture, interstitial oxygens serving as
solitons bring singularities in both lattice and charge
modulations, which is analogous to the case in hole-doped
cuprates [20]. Periodic singularities introduce a secondary
order into the PM phase and amplitude along the qs

direction. Meanwhile, a new periodicity for ð017̄Þ planes
related to SOM spots forms. Eventually, the PM phase and
amplitude are modulated by a SOM wave and are depen-
dent on the SOM wave vector qs and position vector r,
leading to intertwined PM and SOM, as defined in Eq. (2).
The distribution of singularities in modulation can be

random [12,21] or periodic in real space (this study) as a
result of competing energies in the system. On the basis of
our experimental observations, DFT calculations, and sim-
ulations, we propose a new paradigm of modulating phase
and amplitude parameter spaces by a second-orderwave (qs).
As illustrated in the modulation formula [Eq. (2)], a q vector
(e.g., q2 ¼ qs) is introduced into the phase and amplitude
field [u ¼ u1½q1;A1ðq2Þ;ϕ1ðq2Þ�] rather than as an inde-
pendent Fourier component [u ¼ u1ðq1Þ þ u2ðq2Þ] [13].

This concept is readily generalizable tomultiple-q cases. The
phase and amplitude for all Fourier components can be
independently modulated by a second-order wave (qj

s), i.e.,
u ¼ P

i;jui½qi;Aiðqj
sÞ;ϕiðqj

sÞ�. Based on this framework,
additional degrees of freedom are essentially added in
both phase and amplitude parameter spaces. This formulism
provides amore accurate and universal depiction of the order
parameter and can bewidely applicable to numerous ordered
systems, as singularities are ubiquitous [12,21–24,42].
In summary, by purposely introducing excess holes in a

prototype charge-ordered system LuFe2O4þδ, we observed
a new type of modulation with its phase and amplitude
modulated by a second-order modulation wave using state-
of-the-art electron microscopy. By directly measuring
lattice and charge components at atomic scale, quasiperi-
odic singularities are found in both periodic lattice dis-
placements and charge modulation. We show that due to the
interplay between interstitial oxygens, lattice locking, and
charge frustration, the phase and amplitude of primary
modulation can be tuned by quasiperiodic singularities,
engendering a second-order modulation wave. Through
introducing a q vector into amplitude and phase parameter
spaces, a new modulation formulism is developed. Our
study illustrates a new approach to manipulate singularity
in modulation waves via targeted hole doping to understand
the intriguing behavior of quantum materials.
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