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Simulations of elastoinertial turbulence (EIT) of a polymer solution at low Reynolds number are shown
to display localized polymer stretch fluctuations. These are very similar to structures arising from linear
stability (Tollmien-Schlichting modes) and resolvent analyses, i.e., critical-layer structures localized where
the mean fluid velocity equals the wave speed. Computations of self-sustained nonlinear Tollmien-
Schlichting waves reveal that the critical layer exhibits stagnation points that generate sheets of large
polymer stretch. These kinematics may be the genesis of similar structures in EIT.
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Turbulent drag reduction is an important and puzzling
phenomenon in the non-Newtonian flow of complex fluids.
Addition of polymers or micelle-forming surfactants to a
liquid can lead to dramatic reductions in energy dissipation
during turbulent flow while having a negligible effect on
laminar flow [1].
In a Newtonian channel or pipe flow, transition to

turbulence occurs by a so-called subcritical or “bypass”
transition mechanism as the flow rate, measured nondimen-
sionally by theReynolds number, Re, increases: turbulence is
initiated by finite-amplitude perturbations to the laminar flow
profile, while the laminar flow remains linearly stable.While
channel flow exhibits a two-dimensional linear instability
leading to so-called Tollmien-Schlichting (TS) waves, the
critical Reynolds number Re ¼ 5772 is much higher than
that observed for transition, so these are not traditionally
viewed as playing an important role in Newtonian transition.
For flowing polymer solutions under some conditions

(low concentration, short polymer relaxation times), tran-
sition to turbulence occurs via the usual bypass mechanism.
With further increase in Re, drag reduction sets in, and the
flow eventually approaches the so-called maximum drag
reduction (MDR) asymptote, an upper bound on the degree
of drag reduction that is insensitive to the details of the fluid.
Under other conditions, flow transitions directly from

laminar flow into the MDR regime, and can do so at a
Reynolds number where the flow would remain laminar if
Newtonian [2–5]. Recent experiments and simulations
[6–8] suggest that turbulence in this regime has structure
very different from Newtonian, denoting it as elastoinertial
turbulence (EIT). Choueiri et al. [4] experimentally observed
that at transitionalReynolds numbers and increasingpolymer
concentration, turbulence is first suppressed, leading to
relaminarization, and then reinitiated with an EIT structure
and a level of drag corresponding to MDR. Therefore, there

are actually two distinct types of turbulence in polymer
solutions, one that is suppressed by viscoelasticity, and one
that is promoted.
The present work reports computations and analysis that

elucidate the mechanisms underlying EIT.We show that EIT
at low Re has highly localized polymer stress fluctuations.
Surprisingly, these strongly resemble linear Tollmien-
Schlichting modes as well as the most strongly amplified
fluctuations from the laminar state. Furthermore, the kin-
ematics of self-sustained nonlinear TS waves generate
sheetlike structures in the stress field similar to those
observed in EIT. The resemblance of structures at EIT to
these Newtonian phenomena may shed light on the observed
near universality of the MDR regime with regard to polymer
properties.
Formulation.—Weconsider pressure-driven channel flow

with constant mass flux. The x, y, and z axes are alignedwith
the streamwise (overall flow), wall-normal, and spanwise
directions, respectively. Lengths are scaled by the half
channel height l so the dimensionless channel height
Ly ¼ 2. The domain is periodic in x and z with periods
Lx and Lz. Velocity v is scaled with the Newtonian laminar
centerline velocity U, time t with l=U, and pressure p with
ρU2, where ρ is the fluid density. The polymer stress tensor
τp is related to the polymer conformation tensor α (second
moment of the probability distribution for the polymer end-
to-end vector) through the FENE-P constitutive relation,
which models each polymer molecule as a pair of beads
connected by a nonlinear spring withmaximum extensibility
b. We solve the momentum, continuity, and FENE-P
equations,

∂v
∂t þ v · ∇v ¼ −∇pþ β

Re
∇2vþ ð1 − βÞ

ReWi
ð∇ · τpÞ; ð1Þ
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∇ · v ¼ 0; ð2Þ

τp ¼ α

1 − trðαÞ
b

− I; ð3Þ

∂α
∂t þ v · ∇α − α · ∇v − ðα · ∇vÞT ¼ −1

Wi
τp: ð4Þ

Here Re ¼ ρUl=ðηs þ ηpÞ, where ηs and ηp are the solvent
and polymer contributions to the zero-shear rate viscosity.
Theviscosity ratio β ¼ ηs=ðηs þ ηpÞ; polymer concentration
is proportional to 1 − β. We fix β ¼ 0.97 and b ¼ 6400. The
Weissenberg number Wi ¼ λU=l, where λ is the polymer
relaxation time, measures the ratio between the relaxation
time for the polymer and the shear time scale for the flow.
Below we report values of friction factor f ¼ ð2τw=ρU2Þ,
where τw is time- and area-averaged wall shear stress. This is
a nondimensional measure of pressure drop or drag. Its value
in laminar flow is denoted flam.
For the nonlinear direct numerical simulations (DNS)

described below, a finite difference scheme and a fractional
time step method are adopted for integrating the Navier-
Stokes equation. Second-orderAdams-Bashforth andCrank-
Nicolson methods are used for convection and diffusion
terms, respectively. The FENE-P equation is discretized
using a high resolution central difference scheme [9–11].
No artificial diffusion is applied. For the three-dimensional
(3D) simulations, ðLx; Ly; LzÞ ¼ ð10; 2; 5Þ; these were
chosen to match [6]. Typical resolution for the 3D runs at
EIT is ðNx; Ny; NzÞ ¼ ð189; 150; 189Þ. For the two-
dimensional (2D) runs at Re ¼ 3000, Ny ¼ 302 is used.
For the linear analyses, Eqs. (2)–(4), linearized around the
laminar solution and Fourier transformed in x, z, and t, are
discretized in y with a Chebyshev pseudospectral method.
Typically, about 200 Chebyshev polynomials are sufficient
for the resolvent calculations, whereas as many as 400 are
required for the TS eigenmode. The norm used in the
resolvent calculations is the sum of the kinetic energy and
ameasure of the conformation tensor perturbationmagnitude
that is consistent with the non-Euclidean geometry of
positive-definite tensors [12].
Nonlinear simulation results.—Figure 1 illustrates 3D

DNS results for scaled friction factor ðf − flamÞ=flam vs
Weissenberg number Wi at Re ¼ 1500. At low but increas-
ing Wi, the flow is turbulent, with f decreasing, indicating
that the drag is reduced from the Newtonian value. In this
regime, which we denote NT, the turbulence displays a
streamwise vortex structure typical of Newtonian turbu-
lence. With a further increase in Wi, however, f − flam
drops to 0: the flow relaminarizes, as the NT regime loses
existence. (At this Re and all Wi considered here, the
laminar state is linearly stable.) At still higher Wi, the flow,
if seeded with a sufficiently energetic initial condition,
becomes turbulent again, with a very low value of f − flam

(consistent with experimental observations of [4] in pipe
flow) and a very different structure: i.e., a new kind of
turbulence comes into existence. In this regime the flow
structure corresponds to EIT as described by [6,8]; we
further analyze this structure below. In short, asWi increases
from 0, the self-sustaining mechanism of Newtonian turbu-
lence is weakened by viscoelasticity, resulting in loss of
existence of the NT state. As Wi increases further, a new
nonlinear self-sustaining (i.e., bypass transition) mechanism
comes into play, resulting in EIT.
We now focus on the flow structure in the EIT regime.

The inset in Fig. 1 shows a spatial spectrum of the wall
normal velocity at y ¼ 0 (the channel centerplane), i.e.,
jvyðkx; 0; kzÞj. The centerplane is chosen because it yields
the cleanest spectra. In the EIT regime, there is very strong
spectral content when kz ¼ 0, indicating the importance of
2D mechanisms in the dynamics. Indeed, [8] reports that
EIT can arise in 2D simulations. Figure 2(a) shows a slice
at z ¼ 2.5 of the fluctuating wall normal velocity, v0y, and
fluctuating xx-component of the polymer conformation
tensor, α0xx. Observe that α0xx is strongly localized near
y ¼ �0.7 − 0.8. While tilted sheets of polymer stretch
fluctuations have already been noted as characteristic of
EIT [6], the strong localization has not been previously
observed, perhaps because prior results have been at higher
Re and Wi, i.e., further from the point at which EIT comes
into existence. Figure 2(b) shows the dominant ðkxLx=2π;
kzLz=2πÞ ¼ ð2; 0Þ component of theWi ¼ 20 results, phase
matched and averaged over many snapshots. Results for
higher kx are very similar, exhibiting strong localization of
stress fluctuations in the same narrow bands, as well as
velocity fluctuations that span the channel height.
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FIG. 1. Scaled friction factor vs Wi at Re ¼ 1500. Abbrevia-
tions NT, L, and EIT stand for Newtonian-like turbulence,
laminar, and elastoinertial turbulence, respectively. In most cases,
the error bars are smaller than the symbols. Red dotted lines
indicate the intervals of Wi in which the NT solution loses
existence and the EIT solution comes into existence, respectively,
as Wi increases. The inset shows the spatial spectrum of the wall-
normal velocity at y ¼ 0 for Wi ¼ 20. Here, x- and z-wave
numbers kx and kz are reported in scaled form, as kxLx=2π and
kzLz=2π. For the inset, low is blue, high is yellow.
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Linear analyses.—To shed light on the origin of the
highly localized large stress fluctuations, we now consider
the evolution of infinitesimal perturbations to the laminar
state with given wave numbers kx, kz. Two approaches are
used. The first is classical linear stability analysis, in which
solutions of the form ϕðyÞ exp ½iðkxxþ kzz − kxctÞ� are
sought, resulting in an eigenvalue problem for the complex
wave speed c. If any ci > 0, then the laminar state is
linearly unstable—infinitesimal perturbations will grow
exponentially. If all ci < 0, the flow is linearly stable.
The second approach is to determine the linear response of
the laminar flow to external forcing with given real
frequency ω using the resolvent operator (frequency-space
transfer function) of the linearized equations [13,14].
In both analyses, the concept of critical layers, i.e.,
wall-normal positions where the streamwise velocity equals
the wave speed of an eigenmode or resolvent mode, is
important. While some recent studies suggest the impor-
tance of critical-layer mechanisms in viscoelastic shear
flows [12,15–17], they do not make as direct a connection
to EIT as we illustrate here.
Figure 3(a) shows the result of linear stability analysis

(the eigenvalues c) for Wi ¼ 20, kxLx=2π ¼ 2, kz ¼ 0, the
wave number corresponding to the dominant structures
observed in the nonlinear simulations. All eigenvalues have
ci < 0: the laminar flow is linearly stable.

Of note is the mode labeled TS, the viscoelastic continu-
ation of the classical Tollmien-Schlichting mode [18].
Viscoelasticity has only a weak effect on the TS eigenvalue,
which changes from c ¼ 0.362 − 0.019i to c ¼ 0.368 −
0.022i betweenWi ¼ 0 andWi ¼ 20 [19]. Despite the small
change in c, the conformation tensor disturbance depends
very strongly on Wi; the peak value of α0xx grows from 0 at
Wi ¼ 0 to ∼105 times the peak value of v0x at Wi ¼ 20.
The structure of this eigenmode is shown for Wi ¼ 20 in

Fig. 2(c). In the Newtonian case, the disturbance velocity
field is a train of spanwise-oriented vortices that span the
entire channel; this structure is only weakly modified even
at high Wi. The polymer stress disturbance behaves very
differently: at Wi ¼ 20 it consists of highly inclined sheets
that are extremely localized around the critical layers y ¼
�0.79 for the TSwave speed of cr ≈ 0.37. Comparison with
Figs. 2(a) and 2(b) shows a strong similarity between the
eigenmode and the tilted sheetlike structures that are
the hallmark of EIT, with the resemblance between the TS
mode and the ðkxLx=2π; kzLz=2πÞ ¼ ð2; 0Þ structure from
the DNS in Fig. 2(b) being particularly striking. Specifically,
note that for the TS mode, Fig. 2(c), v0y and α0xx are even and
odd, respectively, with respect to y ¼ 0, while in Fig. 2(b)
and the corresponding results at higher wave numbers, these
symmetries hold to a good approximation.
Despite the fact that the TS mode ultimately decays, the

non-normal character of the linearized Navier-Stokes oper-
ator can lead to significant disturbance growth at short times
or significant amplification of harmonic-in-timedisturbances
[13]. It is therefore possible for small disturbances to be

FIG. 2. (a) Snapshot of v0y (line contours) and α0xx (filled
contours) from 3D nonlinear DNS at Re ¼ 1500, Wi ¼ 20,
where ′ denotes fluctuations. (b) Phase-matched average ðkxLx=
2π; kzLz=2πÞ ¼ ð2; 0Þ structures from 3D DNS. (c) Structure of
the TS mode at Re ¼ 1500, Wi ¼ 20, and the same wave
numbers as in (b). (d) Structure of the most strongly amplified
resolvent mode at Re ¼ 1500, Wi ¼ 20, the same wave numbers
as in (b), and c ¼ 0.37. In all plots, contour levels are symmetric
about 0. For v0y dashed, negative; solid, positive. For α0xx black,
negative; red, zero; yellow, positive.
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FIG. 3. Eigenvalue spectrum for ðkxLx=2π; kzLz=2πÞ ¼ ð2; 0Þ
with Wi ¼ 20 and Re ¼ 1500. The eigenvalue labeled TS
corresponds to the TS mode. (b) Leading singular value of the
resolvent operator for Wi ¼ 0 and Wi ¼ 20, plotted on a
logarithmic scale.

PHYSICAL REVIEW LETTERS 122, 124503 (2019)

124503-3



sufficiently amplified that nonlinear effects become signifi-
cant. We now quantify this amplification by computing the
largest singular value σ1 of the resolvent operator. Figure 3(b)
shows results for Wi ¼ 0 and Wi ¼ 20 in the same range of
(real) wave speeds c ¼ ω=kx depicted in Fig. 3(a). The
amplification increases dramaticallywithWi, with thevalues
at Wi ¼ 20 being ∼102 times those for Wi ¼ 0; this is
consistent with the drastic increase in the conformation
tensor disturbance amplitude already discussed for the TS
mode. In both cases, the maximum amplification occurs for
c ≈ 0.37, which coincides with the wave speed for the TS
mode, indicating that the most-amplified disturbance is
closely linked to the TS wave. Figure 2(d) shows the leading
resolvent mode, which is indeed almost identical to the TS
eigenmode in Fig. 2(c). This result provides additional strong
evidence that the structures observed in EIT are closely
related to those in viscoelasticity-modified TS waves.
It was recently shown that viscoelastic pipe flow of an

Oldroyd-B fluid (b → ∞) can be linearly unstable to
center-localized modes with wave speed cr ≈ 1 [20]. We
estimate that for the present parameter values, this mode
only becomes relevant for very high Wi. Furthermore,
center-localized structures are not observed in the simu-
lations of EIT, so we do not consider them relevant here.
Self-sustained viscoelastic Tollmien-Schlichtingwaves.—

Here we elaborate on the potential connection between the
TS-like structure and EIT, presenting results for nonlinear
viscoelastic TS waves, i.e., self-sustained traveling wave
solutions of the full nonlinear governing equations, illustrat-
ing the role of the critical-layer kinematics in generating
localized sheetlike regions of high polymer stretching like
those observed in EIT.
The strong peak in the EIT spectrum seen in Fig. 1

corresponds to a wavelength of 5, so here we report
computations of nonlinear TS wave in a 2D domain with
this length. The upper branch of this solution family is
linearly stable in 2D at Re ¼ 3000 [21–23] and easily
captured with DNS using the linear TS mode as the initial
condition. In Newtonian flow, the solution family exists
at this wavelength down to Re ≈ 2800. We continue the
Newtonian solution at Re ¼ 3000 to the parameters of
interest (β ¼ 0.97 and b ¼ 6400) at Wi ¼ 0.1, then
increase Wi to study the effect of viscoelasticity.
Hameduddin et al. [12] have computed nonlinear visco-
elastic TS waves in the regime Re > 5772 and noted the
role the critical layer plays in polymer stretching at high
Wi, but have not reported the observations described below.
On increasing Wi, the self-sustained nonlinear visco-

elastic TS wave at Re ¼ 3000 develops sheets of high
polymer stretch resembling near wall structures seen at
EIT. Figure 4 illustrates this point with a plot of αxx at
Wi ¼ 3. The source of this stretching is closely tied to
the critical-layer structure of the TS wave velocity field.
Critical layers have long been known to exhibit a so-called
Kelvin cat’s-eye streamline structure [18]—indeed, the

velocity fields for the flows shown in Figs. 2(c) and 2(d)
display this feature. With regard to viscoelasticity, the cat’s-
eye structure is important because it contains hyperbolic
stagnation points: polymers are strongly stretched as they
approach such points and leave along their unstable
manifolds. This phenomenon is clearly seen in Fig. 4(a);
shown in white are streamlines in the reference frame
traveling with the speed of the wave c ¼ 0.39, and in green
is the instantaneous critical-layer position, i.e., where
vx ¼ c. A hyperbolic stagnation point (white dot) exists
at x ¼ 3.22, y ¼ −0.87. The high polymer stretching
follows the streamlines along the unstable directions asso-
ciated with this point, giving rise to an arched sheetlike
structure. By symmetry, identical structures exist in the top
half of the channel. For comparison, Fig. 4(b) shows αxx for
2D EITat Re ¼ 3000, Wi ¼ 15. This takes the form of tilted
sheets of high polymer stretch starting out at locations close
to the walls, and in fact reasonably close to the positions
y ¼ �0.87 of the stagnation points in the nonlinear TSwave
atWi ¼ 3. This similarity in structures suggests a role for TS
wavelike critical-layer mechanisms at EIT. Indeed, these
results suggest that the nonlinear TS wave solution branch
may be directly connected in parameter space to EIT. We do
not find this to be the case at Re ¼ 3000; the TS branch loses
existence above Wi ≈ 4 and the EIT branch loses existence
below Wi ≈ 13. Nevertheless, when using the EIT result at
Wi ¼ 13 as the initial condition for a simulation atWi ¼ 12,
EIT persists transiently for hundreds of time units and the last

FIG. 4. (a) Structure of nonlinear self-sustaining TS wave at
Re ¼ 3000, Wi ¼ 3. White streamlines, shown in a reference
frame moving with the wave speed c ¼ 0.39, are superimposed
on color contours of αxx. Green lines indicate the instantaneous
critical-layer positions, and white dots indicate the locations of
hyperbolic stagnation points. (b) Snapshot of αxx contours from
2D EIT at Re ¼ 3000, Wi ¼ 15.
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remaining structure observed as the flow decays to laminar
closely resembles Figs. 2(b)–2(d).
Conclusion.—Elastoinertial turbulence at low Re has

strongly localized stress fluctuations, suggesting the impor-
tance of critical-layer mechanisms in its origin. These
fluctuations strongly resemble the most slowly decaying
structures from linear stability analysis, as well as the most
strongly amplified disturbances as determined by resolvent
analysis of the linearized equations. Furthermore, the
Kelvin cat’s-eye kinematics found in the critical-layer
region of self-sustained nonlinear TS waves generate
sheetlike structures in the stress field that resemble those
observed in EIT. Taken together, these results suggest that,
at least in the parameter range considered here, the bypass
transition leading to EIT is mediated by nonlinear ampli-
fication and self-sustenance of perturbations that generate
TS-wavelike flow structures.
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