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Stokes equations are commonly used to model the hydrodynamic flow around cilia on the micron scale.
The validity of the zero Reynolds number approximation is investigated experimentally with a flow
velocimetry approach based on optical tweezers, which allows the measurement of periodic flows with high
spatial and temporal resolution. We find that beating cilia generate a flow, which fundamentally differs
from the stokeslet field predicted by Stokes equations. In particular, the flow velocity spatially decays at a
faster rate and is gradually phase delayed at increasing distances from the cilia. This indicates that the
quasisteady approximation and use of Stokes equations for unsteady ciliary flow are not always justified
and the finite timescale for vorticity diffusion cannot be neglected. Our results have significant implications
in studies of synchronization and collective dynamics of microswimmers.
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Cilia and flagella are organelles essential for motility that
extend from eukaryotic cells. For eukaryotic organisms,
these organelles are the generic solution to the physical
challenges posed by pumping fluids and generating pro-
pulsion, on the viscosity-dominated micron scale [1].
To generate flow fields, cilia actively bend in periodic
power-recovery strokes and interact with the surrounding
fluid [2,3]. Modeling the hydrodynamics around cilia is of
high interest, and is central to studies of single cell
locomotion [4–7], synchronization of cilia in metachronal
waves [8–14], and interactions and collective motion
between microswimmers [15,16].
On the micron scales, flow is dominated by viscosity,

and the Reynolds number Re ¼ ρUl=μ is small. Here, ρ
denotes density, μ kinematic viscosity, l and U the
characteristic length and velocity scale. In this regime,
the equations governing the hydrodynamics are commonly
approximated by Stokes equations, corresponding to the
limit of zero Re

∇ · u ¼ 0; −∇pþ μ∇2u ¼ 0; ð1Þ

where u and p are velocity and pressure fields [17].
Equation (1) is a simplification of Navier-Stokes equations,
in the limit when vorticity instantly diffuses to infinity and
the viscous boundary layer extends to the entire fluid
domain. One fundamental solution to Eq. (1) is the
stokeslet, which represents the flow induced by a point
force and whose velocity field decays in 1=r. The stokeslet
is the cornerstone of theoretical models in microhydro-
dynamics and is relevant to established numerical
methods, e.g., the boundary element method (BEM) [18]
or the method of regularized stokeslet [19], as well as
reduced models representing the flow around cilia and

microswimmers [7,20]. Time varying stokeslets have been
used to represent the periodic motion of hydrodynamically
coupled oscillators and elucidate the emergence of syn-
chronization and metachronal waves in cilia [8–10,21].
However, unsteady flows induced by cilia are characterized
by Reynolds numbers, which, though small, are not zero.
This has implications for the motility of microorganisms
and synchronization [6,22]. This study investigates the
validity of the stokeslet approximation with experimental
velocimetry measurements. Such direct experimental mea-
surements of time varying flows are challenging owing to
the high frequency of the ciliary motion f ¼ 10–100 Hz.
Previous quantitative measurements of the velocity
decay around cilia have been limited to average flow
velocities [20,23].
Here, we use optical tweezers-based velocimetry (OTV)

[24,25] to measure unsteady flows around a cilium. We find
the flow to differ fundamentally from the flow predicted in
the zero Re regime. First, the rate of spatial decay of the
velocity is much higher, thereby limiting the range of
hydrodynamic interactions. In addition, we evidence an
important phase delay of the oscillatory velocity compo-
nent, which gradually leads to flow inversion away from the
cilium. Our experimental results highlight the limitations
of using stokeslets to represent unsteady flows and in
particular for studies of synchronization in cilia and
microswimmers.
In our OTV method, we directly measure the hydro-

dynamic force exerted on a microbead to determine the
flow velocity [24,25]. The optical tweezers setup is similar
to Ref. [26]. A laser beam (λ ¼ 1064 nm) is focused
through a water immersion objective (Nikon CFI
PlanApo VC 60X NA ¼ 1.20). Around the laser focal
point, beads present in solution are subject to a trapping
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force F ¼ −kΔx, where Δx, the bead displacement from
the laser beam focus, is monitored with back focal plane
interferometry with high temporal resolution (<0.1 ms).
We use beads of radii a ¼ 1–2.5 μm and trap stiff-
nesses k ¼ 12–50 pN μm−1.
At a given location, flow velocitiesuðtÞ are deduced from

beaddisplacementsΔx. For unsteady flows, the dynamics of
the trapped bead is governed by the Boussinesq-Basset-
Oseen (BBO) equation. The particle Reynolds number
Rea ¼ ρjuja=μ is small Rea ≈ 10−5 − 10−4 and the inertia,
addedmass, and Basset forces are negligible [17]. The BBO
equation then reduces to a first order equation balancing the
trapping force and the hydrodynamic drag

_Δxþ k
ζ
Δx ¼ uðtÞ; ð2Þ

which allows us to deduce the flow velocity uðtÞ from the
displacement Δx [27].

The flow velocity u ¼ ðu; vÞ is measured around the
beating cilia of single C. reinhardtii cells, held by suction
with a glass pipette, at a height of 120 μm from the surface,
following Ref. [28]. Cells varied in cell body radius
R ¼ 4.4� 0.8 μm, cilia length l ¼ 11.5� 2.0 μm, and
ciliary beating frequency f ¼ 53.0� 5.0 Hz. We measured
the flow velocity using the OTV method at different
positions from the cell center, in the xy plane of the cilia,
where the x direction is aligned with the cell-pipette axis
[Fig. 1(a)]. The flow induced by the cilia is notably larger in
the x direction, and we report the velocity component u. We
first focus on the velocity along the y axis for positions
ðx ¼ 0; y ¼ rÞ at increasing lateral distances from the cell
center r ≈ 20–120 μm. Figure 2 presents flow measure-
ments for r=l ¼ 1.7 and r=l ¼ 4.9. Results are nondimen-
sionalized with l, the length of the cilia, f the beating
frequency, and U ¼ lf, the typical cilia velocity. OTV
measurements are synchronized with high-speed video
recordings of the beating cilia using an sCMOS camera
at a frame rate of 400–850 fps [Fig. 1(a)]. For each frame,
we track the cilia shape and reconstruct periodic deforma-
tions [Fig. 1(b)]. The ciliary phase ϕðtÞ is defined from a
principal component analysis, similarly to [4], with the
convention ϕ ¼ 0 when the cilia transition from the
recovery to the power stroke and extend the furthest from
the cell; see Fig. 1(b). To evaluate the validity of the zero
Reynolds regime, we use the tracked ciliary deformations
to compute the flow velocity fields predicted by Eq. (1).
Stokes equations (1) are solved numerically using a hybrid
BEM and slender-body approach, similar to [17]. The cell
body and the glass pipette are represented with a completed
double layer boundary integral equation, with the singu-
larities of the completion flow distributed along the
centerline of the pipette [29]. The cilia are represented
using slender-body theory [30]. We use this computational

(a) (c)(b)

FIG. 1. (a) An optically trapped bead measures the local flow
around the cilia of a Chlamydomonas reinhardtii cell held by a
micropipette. (b) Tracked flagellar shapes from image analysis of
a video-recorded beating cycle. (c) Flow velocity field corre-
sponding to the cell in (a), computed by solving Stokes equations.

(a) (c) (d)

(b)

FIG. 2. Comparison between the flow velocity experimentally measured with OTV (gray) and the flow computed with BEM
(magenta). (a) Close to the cell, r ¼ 23.0 μm, the measurements appear in phase. (b) At larger distances from the cell center,
r ¼ 66.2 μm, the OTV measurements of the velocity is phase delayed compared to what is predicted from solving Stokes equations
(inset) OTV raw data (gray), moving-window-averaged data (blue), and the flow computed with BEM (magenta). (c)–(d) Flow velocity
u over one period, averaged for ∼40 periods, for the OTV measurements (c) compared to uS calculated with BEM from the tracked
shapes (d). Solid and dashed lines correspond to the velocity at r ¼ 23.0 μm and r ¼ 66.2 μm, respectively. A beat cycle begins when
the cilia reach the most forward position, at the start of the power stroke. The flow velocity predicted by Stokes equations is in phase at
different distances from the cell (d), whereas it is phase delayed in our OTV measurements (c).
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approach to compare OTV velocity measurements uðtÞ
with the flow velocity field predicted by Stokes equations
uS; see Fig. 1(c).
Figure 2 represents OTV measurements of u as a

function of time compared with flow velocities predicted
from solving Stokes equations uS for tracked ciliary
deformations. Close to the cilia, for r=l ¼ 1.7, velocity
measurements are in quantitative agreement with the
solution to Stokes equations. In particular, on Fig. 2(a),
measurements capture the high frequency periodicity of the
ciliary flow, with positive flow velocities uðy; tÞ caused by
the power stroke and negative flow velocities by the
recovery stroke. A few cilia length away from the cell,
flow measurements show significant discrepancies with
Stokes flow. Figure 2(b) represents our flow measurements
at y=l ¼ 4.9. At these distances, the periodicity of the
ciliary flow can still be clearly seen from the raw data and
the amplitude of flow oscillations is reduced as expected for
Stokes flow. However, OTV measurements reveal a phase
shift in the flow velocity u, which the solution uS to Stokes
equations does not predict; see Fig. 2(b). This phase shift θ
is estimated from computing the cross-correlation between
uðtÞ and uSðtÞ. The time shift in Fig. 2(b) is ≈3.7 ms
corresponding to a phase shift of θ ≈ 3π=8 at r=l ≈ 4.9. The
velocity oscillations generated by the power-recovery
strokes become gradually phase delayed as the distance
to the cell increases [Fig. 2(c)]. Close to the cell, u reaches a
maximum in the middle of the power stroke, for ϕ ≈ π=2,
as predicted by Stokes equations, whereas 4.9 ciliary length
away, u reaches its maximum later in the stroke, toward the
beginning of the recovery stroke, when ϕ ≈ π; see Fig. 2(c).
Hence, the velocity magnitude at r=l ≈ 4.9 reaches a
maximum when the velocity magnitude close to the cell
(at r=l ≈ 1.7) is minimum and equal to zero. Therefore, the
flow fundamentally differs from the flow uS, expected in
the zero Re limit, where the flow is in-phase at all distances;
see Fig. 2(d).
We further investigate the spatial decay in flow velocity

at increasing distances r from the cell (Fig. 3). We first
consider uS predicted from solving Stokes equations. At a
given phase ϕ during the stroke, uS has the same sign at all
locations along the y axis and oscillates between being
positive at all r during the power stroke and being negative
everywhere during the recovery stroke; see Fig. 3(a). This
is because Stokes equations assume the instantaneous
diffusion of vorticity and momentum to infinity. The
direction of Stokes flow in an unbounded domain always
follows the direction of the forcing in the entire fluid
domain. In contrast, our measurements of u reveal flow
inversion, where the flow direction changes at increasing
distances from the cell. The sign of u only agrees with the
numerical solution to Stokes equation in the cell vicinity
and is the opposite far away; see Fig. 3(a) and 3(b). For
example, when ϕ ≈ π=10, the cilia are at the beginning of
the power stroke, u is positive close to the cell, but negative

beyond an inversion point when r=l ≥ 2.7. The inversion
point, for which u ¼ 0, moves away from the cell as the
ciliary phase ϕ increases, and reaches r=l ¼ 5.6, in the
middle of the power stroke, when ϕ ≈ π=2 and u is
maximum close to the cell. At the beginning of the recovery
stroke, when the cilia reverts the direction of its motion,
another inversion point is created near the cell and later
propagates away from the cell; see Fig. 3(b). The instanta-
neous velocity distribution is markedly different from
Stokes predictions throughout the beating cycle and
differences appear as close as r=l ∼ 2–3; see the
Supplemental Material [31] representing the flow field
over the entire beat compared with Stokes flow.
The experimental results in Figs. 2 and 3 are reminiscent

of Stokes’ second problem and point toward the breakdown
of the quasisteady approximation of Stokes flows [31]. The
OTV allows us to resolve the finite time required for the
vorticity created at the surface of the organism to diffuse to
the bulk. Although commonly neglected, the effect of the
unsteady term of Navier-Stokes equations in microhydro-
dynamics is well known [6,17,32]. Theoretically, the
solution to unsteady Stokes equations for an oscillating
point force prototypically shows how small Re alter the
zero Re solution [17]. In this case, the relevant length scale
is δ ¼ ffiffiffiffiffiffiffiffiffiffi

μ=ρf
p

, the characteristic length scale of vorticity
diffusion δ ≈ 130 μm. At short distances from the point
force r ≪ δ, the transient associated with the diffusion of
vorticity is very short and the solution tends to the stokeslet.
For large distances r, the spatial decay of the flow velocity
becomes significantly stronger than for the stokeslet and
scales with 1=r3 [17]. In addition, flow oscillations are
predicted to be phase delayed with the forcing. It is
interesting to then decompose velocity measurements as
uðy; tÞ ¼ ūðyÞ þ u0ðy; tÞ, where ūðyÞ is the average flow
and u0ðy; tÞ are the zero-averaged oscillations. We further

(a) (b)

FIG. 3. Flow velocity as a function of the distance to the cell
center at separate ciliary phases (a) corresponds to the flow
computed with the BEM from the tracked shapes and (b) to the
OTV measurements. (a),(b) Velocity profiles are represented at
the same stages during the power-recovery strokes. Each color
represents different ciliary phases, ϕ, as indicated in the legend.
OTV measurements (b) reveal the existence of an inversion point,
where the direction of the flow reverses, which is not predicted by
the BEM computation.
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denote δu0ðyÞ the amplitudes of the flow oscillations u0. In
the limit of zero Re, ū and δu0 are expected to both follow
the same 1=r rate of decay as the stokeslet. However, from
linearity, one would expect very different rates of spatial
decay for the average flow ū and the oscillations δu0, if
transient effects are important. Figure 4 represents the
velocity field measured for several different cells. ū is
obtained directly by computing the average velocity over
the entire duration of the experiment and δu0 is the average
amplitude of u0. The rate of spatial decay of ū and δu0 is
different and can be compared to the rate of velocity decay
expected from the solution to Stokes equations for a point
force located 120 μm from a solid wall [Figs. 4(a) and
4(b)]. ū follows the decay in 1=r expected from the
stokeslet solution [Fig. 4(a)]. On the other hand, the rate
of decay of δu0 is different and we find δu0 to decay faster
than 1=r, expected from Eq. (1), and closer to 1=r3

predicted by the unsteady Stokes equations [Fig. 4(b)].
We now consider the phase delay θ between the cilium and
the oscillatory flow u0. We find the phase delay to increase
with distance from θ ¼ 0 (in-phase) to θ ≈ π (antiphase);
see Fig. 4(c) (blue symbols). At a distance r ≈ δ, which can
be regarded as the boundary layer thickness, the flow is in
antiphase with the cilium, which quantitatively agrees with
the flow predicted from the unsteady Stokes equations for
an oscillating point force [17] [Fig. 4(c)]. The slope in
Fig. 4(c) (blue symbols) corresponds to a phase increase of
∼0.032� 0.003 rad μm−1 and hence to a ∼π=2 phase
increase over a distance of ∼50 μm. In addition, we
performed measurements of u at increasing positions along
the x axis (Fig. 4, red symbols). Similar to the stokeslet
field around a point force in the x direction, u is larger along
the x axis compared to the y axis; see Figs. 4(a) and 4(b).
Along the y axis, we find similar trends as along the x axis:

the rate of decay of the average flow agrees with predictions
from Stokes equations [Fig. 4(a)] while the oscillatory
component decays faster. Furthermore, we find the phase
increase of the x component of the velocity to be lower
along the x axis then along the y axis. This agrees with the
solution to the unsteady Stokes equations for an oscillating
point force along the x axis [Fig. 4(c), solid lines]. This
solution is axisymmetric about the x axis and the phase
increase depends on the direction: it is minimum in the
direction of the oscillating force, the x axis, in agreement
with our measurements, and is maximum in any direction
perpendicular to the x axis, in agreement with our mea-
surements along the y axis. Though not measured exper-
imentally, the phase increase along the z axis is expected,
from the axisymmetry of the solution, to be similar to the
reported y-axis measurements.
In this Letter, we present direct experimental evidence of

the shortcomings of using Stokes equations to represent
micron scale flows generated by beating cilia and flagella.
We find the amplitude of the oscillatory flow velocity to
decay much faster than the average flow and the oscil-
lations of the flow velocity to be gradually phase shifted at
increasing r. Although the zero Reynolds number limit is
justified to model hydrodynamic forces on cilia for motility
studies, it does not accurately predict the range and nature
of hydrodynamic interactions, for oscillatory flows relevant
to synchronization. The discrepancies in amplitude and
phase are not limited to the far field, for r ≫ δ beyond
the diffusive length scale. Instead, significant differences
between our measurements and Stokes predictions already
appear at surprisingly short distances from the cell of
r ≈ 2–3l. The inaccuracy of the zero Reynolds number
approximation originates in the quasisteady approximation,
which fails to take into account the diffusive timescale of

(a) (b) (c)

FIG. 4. Characteristics of the flow measured with the OTVas a function of r=δ. Different symbols represent datasets for different cells,
with beads of 1 μm (open symbols) or 2.5 μm (other symbols) radii. Measurements are taken along the y axis (blue) at positions
ðx ¼ 0; rÞ and along the x axis (red) at positions ðr; y ¼ 0Þ. We report the average flow velocity ū (a) and the amplitude of the zero-
averaged oscillatory component δu0 (b). Dashed lines show predictions from Stokes equations for a point force located 120 μm above a
solid surface. The decay rate of the oscillatory flow δu0 (∼1=r3) is faster compared to the decay rate of the average flow ū (∼1=r).
(c) Phase shift θ between the experimental and the computed results. Solid lines show predictions from the unsteady Stokes equations for
an oscillating point force.
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vorticity. Our experimental observations are general and
characteristic of how the unsteady term in the Navier-
Stokes equations affects the flow, and will be present in
other flow configurations, e.g., for cilia close to a no-slip
wall. For such a point force close to a wall, the decay
of the velocity field will increase from 1=r3, for the
quasisteady approximation given by the Blake tensor, to
1=r5. Our results have implications in studies of hydro-
dynamic synchronization between cilia and flagellated
microswimmers.
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