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We theoretically study and successfully observe the evolution of Gaussian and Airy surface gravity water
wave packets propagating in an effective linear potential. This potential results from a homogeneous and
time-dependent flow created by a computer-controlled water pump. For both wave packets we measure the
amplitudes and the cubic phases appearing due to the linear potential. Furthermore, we demonstrate that the
self-acceleration of the Airy surface gravity water wave packets can be completely canceled by a linear
potential.
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In classical mechanics a massive particle accelerates in a
potential linear in the coordinate. In quantum mechanics,
the corresponding wave function accumulates not only a
position-dependent phase, associated with this momentum
change [1], but also a position-independent phase that scales
with the third power of time [2]. In this Letter, we report on
measurements of this cubic phase, predicted by Earle Hesse
Kennard in 1927 for a Gaussian wave packet, by creating a
linear potential for surface gravity water waves.
Phase contributions closely related to the Kennard phase

emerge, for instance, in the Feynman path integral [3], the
dispersionless free propagationof anAirywavepacket [4–6],
the dynamics of neutrons in the gravitational field [7,8], the
retroreflection of an atom laser beam from a potential barrier
[9], and the interference ofmatter waves created [10–13] by a
point source located in a linear potential. Despite this wide
interest, no direct observation of the Kennard phase exists,
since any setup measuring the probability density is insensi-
tive to any global position-independent phase.
One way to circumvent this problem is to perform an

interferometric measurement [14], e.g., with a path-depen-
dent strength of the constant force [15]. However, our use
of surface gravity water waves allows us to measure the full
waveform providing us directly with the cubic phase.
In many aspects the time evolution of a wave function in

quantum mechanics is analogous to that of paraxial optical
beams [16], surface gravity water wave pulses [17–20], and
underwater acoustic beams [21]. In this Letter, we utilize
one of these analogies and study the propagation of surface
gravity water waves in an effective linear potential, realized
by a time-dependent homogeneous, and well-controlled

water flow. In particular, we focus on the evolution of
Gaussian and Airy wave packets in this arrangement to gain
insight into the corresponding quantum problem.
Both preserve the shape of their envelopes during

propagation in a constant or linear potential. Indeed, a
Gaussian wave packet spreads because of dispersion, but
keeps its Gaussian shape. In contrast, the ideal Airy wave
packet is “dispersion free,” that is it preserves its exact
shape while it “self-accelerates” and follows a parabolic
trajectory in space-time [4–6]. Moreover, a linear potential
can change [22–26], and even eliminate [4,25–27] this self-
acceleration, with the envelope of the Airy wave packet
retaining its shape. These remarkable properties occur even
for an exponentially truncated Airy wave packet [28].
For both Gaussian and Airy wave packets we experi-

mentally confirm these predictions. Moreover, we measure
directly the Kennard phase as well as its generalizations,
and demonstrate that they crucially depend [15] on the
initial profile of the wave packet.
For surface gravity water waves with low steepness

moving in an external flow, the equation [29]

−i
∂A
∂ξ ¼ −

∂2A
∂τ2 − FτA ð1Þ

for the normalized amplitude envelope A≡ Aðτ; ξÞ in the
comoving frame has a form similar to the one-dimensional
time-dependent Schrödinger equation of a particle in a
linear potential −Fτ corresponding to a constant “force” F.
However, the roles of time and space are interchanged.

Indeed, the scaled dimensionless variables ξ and τ are
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related to the propagation coordinate x and the time t by
ξ≡ ε2k0x and τ≡ εω0ðx=cg − tÞ.
The carrier wave number k0 and the angular carrier

frequency ω0 satisfy the deep-water dispersion relation
ω2
0 ¼ k0g, with g being the gravitational acceleration, and

define the group velocity cg ≡ ω0=2k0. The parameter ε≡
k0a0 characterizing the wave steepness is assumed to be so
small that Eq. (1) is free of nonlinear terms.
The complex amplitude envelope A ¼ jAj exp ðiφAÞ

determines the variation in time and space of the surface
elevation

ηðt; xÞ≡ a0jAðt; xÞj cos ½k0x − ω0tþ φAðt; xÞ� ð2Þ
including the carrier wave, where a0 is the maximum
amplitude of the envelope.
The effective potential −Fτ in Eq. (1) is determined [29]

by the derivative ð∂Φ=∂τÞjZ¼0 of the external dimension-
less velocity potential Φ≡ ϕ=ðω0a20Þ at the free surface
given by the dimensionless vertical coordinate Z ¼ 0 with
Z≡ εk0z. Hence, we can create the potential Fτ≡
4εð∂Φ=∂τÞjZ¼0 by an externally operating water pump.
In order to measure the Kennard phase and its gener-

alizations, we have conducted a series of experiments with
surface gravity water waves moving in a time-dependent
water flow shown in Fig. 1. The velocity of the homo-
geneous flow increases linearly in time and is induced by a
computer-controlled water pump. Our experimental facility
[30] allows us to generate flow velocities needed to observe
this cubic phase. The water waves are generated by a
computer-controlled wave maker [34] and measured by
wave gauges.
The Gaussian envelope of the temporal surface elevation

[35]

ηðGÞðt; 0Þ≡ a0 exp

�
−
t2

t20

�
cosðω0tÞ ð3Þ

prescribed by the wave maker at x ¼ 0, with t0 being the
initial pulse size, gives rise to the Gaussian wave packet
[15] with the amplitude

jAðGÞðτ;ξÞj ¼
�

1

1þξ2=ξ2s

�
1=4

exp

�
−

ðτ−Fξ2Þ2
τ20ð1þξ2=ξ2sÞ

�
ð4Þ

and the phase

φðGÞ
A ðτ; ξÞ ¼ 1

2
arctan

�
ξ

ξs

�
−

ξ

ξs

ðτ − Fξ2Þ2
τ20ð1þ ξ2=ξ2sÞ

− Fτξþ F2ξ3

3
; ð5Þ

where τ0 ≡ εω0t0 and ξs ≡ τ20=4.
The first term in Eq. (5) determines the Gouy phase [36].

Moreover, we refer to the global phase cubic in ξ and
quadratic in F expressed by the fourth term as the Kennard
phase [2].
According to Eq. (4) the wave packet preserves its

Gaussian shapewhile propagating along x, and its maximum
follows a parabolic trajectory t ¼ x=cg − ðε3k20=ω0ÞFx2,
which is the familiar manifestation of a constant “acceler-
ation” with time and space interchanged. We confirm this
property bymeasuring the elevations η ¼ ηðt; xÞ ofGaussian
wave packets at different locations x and times twithout and
with a linear growth of the water velocity, as depicted by
black lines in Figs. 2(a) and 2(b), respectively.
In order to extract the trajectory of the wave packet in the

laboratory frame, we obtain for each observed elevation η
the mean value

htiðxÞ≡
Rþ∞
−∞ tjηðt; xÞj2dtRþ∞
−∞ jηðt; xÞj2dt ð6Þ

of the temporal coordinate t as the function of x, shown in
Fig. 2(c) by blue circles and red squares.
Next, we fit the expected parabolic dependence

htiðxÞ ¼ a1xþ a2x2; ð7Þ

shown in Fig. 2(c) by blue and red curves (without and
with external flow) to this data and obtain a1 ¼ 2.82 s=m,
which is in good agreement with c−1g ¼ 2.86 s=m,
and a2 ¼ 0.19 s=m2. This procedure yields F≡
−ðω0=ε3k20Þa2 ¼ −6.58. Finally, the measured values of
cg and F lead to the blue and the red curves in Figs. 2(a)
and 2(b) for the amplitude jAðGÞj, Eq. (4).
To measure the Kennard phase, we apply the Hilbert

transform [30], and extract the phase k0x − ω0tþ φðGÞ
A ðt; xÞ

of the surface elevation ηðt; xÞ at the maximum of the
Gaussian amplitude jAðGÞðt; xÞj, Eq. (4), that is along the
line τ ¼ Fξ2. After removing the carrier phase k0x − ω0t,
we present the remaining phase in Fig. 2(d) by blue circles
(without external flow) and red squares (with external
flow), together with the blue and red curves given by

φGðξÞ≡φðGÞ
A ðτ¼Fξ2;ξÞ¼1

2
arctan

�
ξ

ξs

�
−
2

3
F2ξ3; ð8Þ

where we have used Eq. (5). We note that due to our
experimental scheme of measuring at the maximum of the

FIG. 1. Experimental setup for generating Gaussian and Airy
surface gravity water wave packets moving in a time-dependent
homogeneous flow created by a water pump.
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wave packet the coefficient of the Kennard phase has been
changed from 1=3 to −2=3.
Figure 2(d) clearly indicates that without the external

flow (F ¼ 0), only the Gouy phase manifests itself. When
the external flow is applied (F < 0) the modified Kennard
phase −ð2=3ÞF2ξ3 appears, as shown in Fig. 2(e).
We emphasize that the Kennard phase, that is a global

cubic phase, is not limited to a Gaussian wave packet but
occurs for a wide variety of wave packets moving in a linear
potential. Indeed, the solution

Aðτ; ξÞ ¼
Z þ∞

−∞
GFðτ; ξjτ0; 0ÞAðτ0; 0Þdτ0 ð9Þ

of Eq. (1), which involves the initial envelope Aðτ; 0Þ and
the propagator [3]

GFðτ; ξjτ0; 0Þ≡ 1

2
ffiffiffiffiffi
πξ

p exp

�
−iSclðτ; ξjτ0; 0Þ þ i

π

4

�
ð10Þ

with the classical action

Sclðτ; ξjτ0; 0Þ≡ ðτ − τ0Þ2
4ξ

þ Fξ
2
ðτ þ τ0Þ − F2

12
ξ3 ð11Þ

for a particle in a linear potential, contains the global cubic
phase F2ξ3=12 proportional to the square of F.
Obviously, this term is closely related to the Kennard

phase. However, as a result of the integration in the
Huygens integral, Eq. (9), over τ0 the phase cubic in ξ
depends [15] also on the initial profile Aðτ; 0Þ. Indeed, we
recall that for a Gaussian wave packet the prefactor is 1=3
rather than −1=12.
We now study this generalized Kennard phase by

extending our approach to Airy wave packets. The tem-
poral surface elevation [37]

ηðAiÞðt; 0Þ≡ a0Ai

�
−

t
t0

�
exp

�
−α

t
t0

�
cosðω0tÞ; ð12Þ

prescribed by the wave maker at x ¼ 0, where t0 and α
denote the characteristic duration and the positive trunca-
tion parameter, gives rise to the Airy pulse with the
amplitude

jAðAiÞðτ; ξÞj ¼ jAi
�
1

τ0

�
τ −

�
F þ 1

τ30

�
ξ2
�
− 2iα

ξ

τ20

�				
× exp

�
α
τ

τ0
− α

�
F þ 2

τ30

�
ξ2

τ0

�
ð13Þ

and the phase [30]

φðAiÞ
A ðτ;ξÞ¼

�
F2

3
þF
τ30
þ 2

3τ60

�
ξ3−

�
Fþ 1

τ30

�
τξ−

α2

τ20
ξ; ð14Þ

where τ0 ≡ εω0t0.
Equations (13) and (14) show [4] that the ideal Airy

pulse, corresponding to α ¼ 0, exhibits three remarkable
features: (i) it keeps its shape, (ii) its center-of-mass motion
represents a parabola in the ðτ; ξÞ or ðt; xÞ coordinates
corresponding to the total “acceleration” F þ 1=τ30, and
(iii) it picks up cubic and linear phases in ξ.
We verify these properties by measuring the surface

elevation η ¼ ηðt; xÞ of regular (t0 < 0) and inverted
(t0 > 0) Airy wave packets at different locations x and
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FIG. 2. Kennard phase for Gaussian surface gravity water wave
packets. Observed surface elevation η (black line) and predicted
envelopes (colored lines) given by Eqs. (2) and (4) without (a)
and with (b) external flow. In both cases k0 ¼ 20 m−1, a0 ¼
5.0 mm (ε ¼ 0.1), cg ¼ 0.35 m=s, and t0 ¼ 0.72 s. The thick
blue and red lines connect maxima of the envelopes measured for
x ¼ 1.4 m, 1.69 m, 1.89 m, and 2.02 m. (c) The mean value
htiðxÞ (blue circles and red squares) of the temporal coordinate,
Eq. (6). The corresponding solid lines are quadratic fits, Eq. (7),
determining the group velocity cg ¼ 1=a1 and the “force” F≡
−ðω0=ε3k20Þa2 ¼ −6.58 in Eq. (1). (d) The phase offset of the
Gaussian wave packet at its maximum without (blue circles) and
with (red squares) external flow compared to the prediction by
Eq. (8) represented by solid lines. (e) The modified Kennard
phase, defined as the difference of the red squares and the blue
circles presented in (d), with the black solid line given by
−ð2=3ÞF2ξ3, Eq. (8).
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times t without and with an external flow. These measure-
ments are presented in [30] and in Fig. 3, respectively.
The black lines in Figs. 3(a) and 3(b) verify that indeed

the Airy pulse preserves its envelope while propagating in a
constant (F ¼ 0) [17], and in a linear potential (F < 0).

In Fig. 3(c) we present by blue circles (without flow) and
red squares (with flow) the location of the main lobe versus
the mean time hti, defined by Eq. (6), with the integration
performed only over the main lobe. For the comparison
with the theoretical predictions, we fit in Fig. 3(c) to this
data the expected parabolic dependence of hti, Eq. (7), and
obtain without flow a1 ¼ 3.03 s=m and a2 ¼ −0.55 s=m2,
in good agreement with a1 ¼ c−1g ¼ 3.05 s=m, and
a2 ¼ −k20=ðω4

0t
3
0Þ ¼ −0.55 s=m2. With flow, we find a1 ¼

3.03 s=m and a2 ¼ −0.5 s=m2 as shown by the red solid
line in Fig. 3(c), resulting in the dimensionless param-
eter F ¼ −1.94.
Next, we apply the Hilbert transform [30] to extract [38]

the phase variation k0x − ω0tþ φðAiÞ
A ðt; xÞ of the surface

elevation ηðt; xÞ, Eq. (2), at the maximum of the

main lobe, that is along the line τ ¼ τðAiÞmaxðξÞ≡ τðAiÞmaxð0Þþ
ðF þ 1=τ30Þξ2. Here, τðAiÞmaxð0Þ denotes the position of the
maximum of the main lobe for ξ ¼ 0.
After removing the carrier phase k0x − ω0t, we present

the remaining phase in Fig. 3(d) by blue circles (without
flow) and red squares (with flow), together with the blue
and red lines given by

φAiðξÞ≡ φðAiÞ
A ½τ ¼ τðAiÞmaxðξÞ; ξ�: ð15Þ

In contrast to the Gaussian wave packets, the Airy ones
have cubic phase terms 2ξ3=ð3τ60Þ even in the absence of a
linear potential (F ¼ 0) as shown by Eq. (14). Since an
Airy wave packet is a multipeak function, we subtract the

linear term ðFτ þ τ=τ30 þ α2=τ20Þξ with τ ¼ τðAiÞmaxðξÞ from
the total measured phase, displayed in Fig. 3(d). We present
the corresponding results for the cubic contributions in
Fig. 3(e) together with the theoretical predictions 2ξ3=ð3τ60Þ
(without flow) and ½F2=3þ F=τ30 þ 2=ð3τ60Þ�ξ3 (with flow)
shown by blue and red curves.
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FIG. 3. Generalized Kennard phase for inverted Airy surface
gravity water wave packets. Observed surface elevation η (black
line) and predicted envelopes (colored lines) given by Eqs. (2)
and (13) without (a) and with (b) external flow. In both
cases k0 ¼ 23 m−1, a0 ¼ 3.93 mm (ε ¼ 0.09), cg ¼ 0.33 m=s,
t0 ¼ 0.82 s, and α ¼ 0.05. The thick blue and red lines connect
maxima of the envelopes measured for x ¼ 0.8 m, 1.0 m, 1.2 m,
and 1.4 m. (c) The mean value (blue circles and red squares) of
the temporal coordinate htiðxÞ, defined by Eq. (6), with integra-
tion performed only over the main lobe, is determined by the
surface elevation η for the parameter t0 ¼ 0.27 s. The corre-
sponding solid lines are quadratic fits, Eq. (7), determining
cg ¼ 1=a1 together with F þ 1=τ30 ≡ −ðω0=ε3k20Þa2 and thus
F ¼ −1.94. The black dashed line x ¼ cgt is shown for com-
parison. (d) The phase offset of the Airy wave packet at the
maximum of the main lobe without (blue circles) and with (red
squares) external flow, the solid lines are given by Eq. (15).
(e) The generalized Kennard phase, obtained by subtracting the

linear terms ðF þ 1=τ30Þτξ and ðα2=τ20Þτξ, Eq. (14), at τ ¼ τðAiÞmaxðξÞ
from the total measured phase presented in (d). The blue and red
curves represent the theoretical predictions, 2ξ3=ð3τ60Þ and
½F2=3þ F=τ30 þ 2=ð3τ60Þ�ξ3, accordingly.
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We conclude by demonstrating that a linear potential can
cancel [4,39] the self-acceleration of the Airy wave packets.
Indeed, as depicted in Fig. 4, the parabolic trajectory (a) of
the main lobe becomes linear (b), that is it starts to
propagate with the group velocity cg. Moreover, in contrast
to Gaussian wave packets, which spread in a linear
potential, Fig. 2(b), Airy wave packets preserve their
shapes, since they are solutions [1,9] of the stationary
Schrödinger equation with a linear potential.
In conclusion, we have observed Gaussian and Airy

surface gravity water wave packets moving in an effective
linear potential obtained by operating a water pump.
Moreover, we have derived theoretically, and measured
successfully the Kennard phase and its generalizations,
[2–4] for Gaussian and Airy wave packets. Finally, we have
demonstrated the cancellation [4] of the self-acceleration of
the Airy surface gravity water wave packets.
We emphasize that our experimental setup is neither

limited to Gaussian and Airy wave packets, nor to a linear
potential. Indeed, it allows us to study the time evolution of
an arbitrary wave packet in a wide variety of potentials.
Moreover, by exciting wave packets with higher steepness
in the water tank, nonlinear terms of the wave equation
come into play, enabling us to study the evolution of
amplitude and phase under the combined effects of the
potential and the nonlinearity [40,41].
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