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Elastic waveguides with time-modulated stiffness feature a frequency-periodic dispersion spectrum,
where branches merge at multiple integers of half the modulation frequency and over a finite wave number
range. In this range, frequency becomes complex, with its real part remaining constant. The vanishing
group velocity associated with these flat bands leads to frequency-selective reflection at an interface
between a nonmodulated medium and a time-modulated one, which converts a broadband input into a
narrow-band output centered at the half modulation frequency. This behavior is illustrated in an elastic
waveguide in transverse motion, where modulation is implemented experimentally by an array of
piezoelectric patches shunted through a negative electrical capacitance controlled by a switching circuit.
The switching schedule defines the modulation frequency and allows the selection of the output frequency.
This implementation is suitable for the investigation of numerous properties of time-space modulated
elastic metamaterials, such as nonreciprocity and one-way propagation, and can lead to the implementation
of novel functionalities for acoustic wave devices operating on piezoelectric substrates.
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Research on time-dependent material properties has
received considerable attention over the years. Para-
metric effects in time-modulated media have long been
used for amplification of electromagnetic waves [1,2] and
surface acoustic waves [3,4]. Parametric amplification in
electromagnetic waveguides has been investigated in peri-
odic [5–10] and nonperiodic modulation schemes [11],
while spatiotemporally modulated gratings have been
proposed for radio-frequency communication systems that
are shielded from echoes and reflections during trans-
mission [12]. In acoustics, isolation levels as high as 40 dB
within the audible range have been achieved with acoustic
circulators consisting of cavities with time-dependent
volumes [13], and asymmetric transmission has been
reported in an acoustic waveguide with a time-dependent
scattering element [14]. Recently, traveling-wave modula-
tion of physical properties has been explored for nonre-
ciprocal wave motion in optics, acoustics, mechanics, and
heat transfer [15–22]. Nonreciprocal components con-
nected in 1D and 2D lattice arrangements [23] have been
investigated for nontrivial wave topologies that support
defect and backscattering immune propagation [24,25]. In
mechanics, numerous theoretical studies have investigated
time-dependent material properties and their potential to
produce nonreciprocity [26]. However, the physical imple-
mentation of dynamically changing stiffness or mass
distributions mostly remains an open challenge. Among
the suggested approaches, light induced softening in
GexSe1−x glasses has been explored [27], while Coriolis-

type effects have been exploited to produce a time-dependent
moment of inertia in a pendulumwith a radiallymovingmass
[28]. More recently, a phononic crystal with spatiotemporal
modulation of electrical boundary conditions in a stack
of piezoelectric elements has been described in [29].
Magnetoelastic media interacting with an external magnetic
field [30] and magnetorheological fluids [31] are also
suggested solutions for traveling wave modulation [32].
In this Letter, we show that time-modulated stiffness in

elastic waveguides produces a frequency-periodic dispersion
spectrum, where branches merge at rωm=2, where ωm is the
modulation frequency and r is an integer. Merging occurs
over a finite wave number range, within which frequency is
complex, with a constant real part. This produces a flat
dispersionbranch that leads to a standing, or nonpropagating,
wave which is parametrically amplified [1,3,4]. Analytical
predictions of the frequency-periodic spectrumwithmerging
branches and of a wave number gap associated with the flat
band are reported for a dispersive elastic waveguide in
transverse motion. Also, we demonstrate, both numerically
and experimentally, the frequency-selective reflection prop-
erties of an interface between a nonmodulated waveguide
and a modulated one, which converts a broadband incident
wave (input) into a narrow-band reflected wave (output),
centered at rωm=2. Experimental implementation of the
concept consists in an aluminum beam partially covered
by an array of piezoelectric patches shunted through negative
capacitance (NC) circuits, which control the equivalent
stiffness of the beam [33]. Periodic switching of the circuit
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connection with the patches produces a square-wave modu-
lation of the waveguide stiffness according to a selected
modulation frequency. The proposed experimental platform
lends itself to the explorationof space-timemodulations as an
effective means to achieve nonreciprocal wave motion [34].
In addition, the use of actively controlled shunted patches
may be pursued for the study of parity-time (PT) symmetric
photonic and phononic systems that feature alternating
regions of gain and loss. Novel functionalities would result
from the nontrivial, nonconservative wave interactions and
phase transitions, and may open new prospects for an active
control of elastic waves, sound, and light [35].
We consider the transverse motion of a beam with time-

dependent material properties, which is governed by

DðtÞ ∂
4wðx; tÞ
∂x4 þ ∂

∂t
�
mðtÞ ∂wðx; tÞ∂t

�
¼ 0; ð1Þ

where D ¼ EI is the bending stiffness, with E denoting
Young’s modulus, and I is the second moment of area of the
beam cross section. Also, m ¼ ρA denotes the beam linear
mass, where ρ is the density and A is the cross-sectional
area. We assume a constant mass mðtÞ ¼ m, and introduce
a time-dependent stiffness DðtÞ ¼ Dðt þ TmÞ, where
Tm ¼ 2π=ωm. A solution of the resulting equation of
motion is sought in the form:

wðx; tÞ ¼ eiðωt−κxÞ
Xþ∞

n¼−∞
ŵneinωmt: ð2Þ

For simplicity, we assume harmonic modulation, i.e.,
DðtÞ ¼ D0½1þ αm cosðωmtÞ�, where αm ¼ Dm=D0 defines
the modulation amplitude. Dispersion relations are
obtained by solving a quadratic eigenvalue problem in
terms of ω upon imposing a wave number κ. The resulting
dispersion diagrams for αm → 0 and αm ≠ 0 in Fig. 1 show
the real and the negative of the imaginary part of the
frequency associated with each wave number. Notably,
time modulation produces a family of branches that are ωm
periodic in the frequency domain. This is consistent with
the theoretical findings on dielectric time modulation in
electromagnetic waveguides [36]. The branches intersect at
frequency rωm=2, as illustrated for αm → 0 in Fig. 1(a). For
finite αm, intersecting branches merge over a finite wave
number range [Fig. 1(b)], within which frequency has a
nonzero imaginary component and a constant real part.
This range of wave numbers was denoted as a κ band gap in
Ref. [36]. In analogy with frequency band gaps, plane wave
harmonic excitation at frequency–wave-number pairs cor-
responding to the flat bands leads to a stationary, or
nonpropagating, wave. In the absence of dissipation, the
insurgence of an imaginary frequency component causes
the amplitude of the wave to increase exponentially as a
result of parametric amplification [3].

We estimate the width of the κ band gap by restricting
our attention to the branches associated with n ¼ 0 and
n ¼ −1 orders in Eq. (2), which gives the following
characteristic equation:

ðω2 − γκ4Þ½ðω − ωmÞ2 − γκ4� −
�
αmγκ

4

2

�
2

¼ 0; ð3Þ

with γ ¼ D=m. For αm → 0, these branches intersect at
point κ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm=ð2γ1=2Þ

p
andω� ¼ ωm=2 [Fig. 1(a)], while

for αm ≠ 0, the solution of Eq. (3) is

ω¼ 1

2

�
ωm−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
mþ 4γκ4 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γκ4ð4ω2

mþα2mγκ
4Þ

qr �
; ð4Þ

whereω is complex ifω2
mþ4γκ4−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γκ4ð4ω2

mþα2mγκ
4Þ

p
<0.

This identifies the wave number range κ ∈ ½κ−; κþ�, with

κ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
m

2γð2 ∓ αmÞ
4

s
ð5Þ

The corresponding complex frequency ω ¼ ωr þ iωi, has
a real part ωr ¼ ωm=2 that is constant with respect to the
wave number.
We investigate the behavior of a wave incident on an

interface between a waveguide with constant properties and
one with modulated Young’s modulus, which quantifies
stiffness (Fig. 2). Based on the observations above and on
published theoretical results for space-time modulated
nondispersive waveguides [17], we expect the unique

(a) (b)

FIG. 1. Frequency-periodic dispersion diagrams for a time-
modulated waveguide (beam in bending). Black and red lines
respectively denote the real part and (the negative of) the
imaginary part of frequency. (a) αm → 0: the intersection between
the n ¼ 0 and n ¼ −1 occurs at frequency ωm=2 and κ�; the
imaginary component is nil as a result of the vanishing modu-
lation amplitude. (b) αm ¼ 0.4: merging of the dispersion
branches at rωm=2 and corresponding nonzero imaginary fre-
quency. The κ-band-gap range κ ∈ ½κ−; κþ� predicted by Eq. (5) is
highlighted by the shaded blue region.
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characteristics of the time-modulated dispersion spectrum
to be reflected in the reflection properties of the interface.
Specifically, a plane wave propagating in the nonmodulated
media at a frequency–wave-number pair corresponding to
the κ band gap will be mostly reflected at the interface as a
result of its inability to propagate in the time-modulated
waveguide. The phenomenon could be also explained by
power conversion between harmonic components, as
done for waves propagating from homogeneous to time-
modulated domains in nondispersive waveguides [17]. In
this context, we consider the waveguide with interface as a
conceptual single-port device that selectively filters a
dominant frequency component out of a broadband input.
The dominant output frequency of such a device (Fig. 2) is
produced from the same broadband input by selecting the
modulation frequency ωm.
The concept is illustrated by evaluating the transient

response of the waveguide with interface through a finite-
difference time-domain (FDTD) approach. In the simula-
tions, we consider a time-constant domain of length
Lh ¼ 0.3 m, while the modulated one is Lm ¼ 0.48 m
long. These dimensions are chosen in accordance
with the considered experimental setup. The beam has a

rectangular cross section with I=A ¼ 8.67 × 10−4 m. The
density is ρ ¼ 2700 kg=m3, while the Young’s modulus
is E0 ¼ 69.9 GPa. In the time-modulated domain, the
Young’s modulus obeys a square-wave modulation law:

EðtÞ ¼ E0 þ
αmE0

2
fsgn½cosðωmtÞ� − 1g; ð6Þ

with αm ¼ 0.14, which is consistent with values produced
during experiments. A wave is injected through a pertur-
bation applied at the free end of the time-constant beam
as a two-cycle tone burst with a center frequency of
fexc ¼ 5 kHz. The frequency content of input winðxp; tÞ
and output woutðxp; tÞ are evaluated by probing a single
location xp close to the interface in the time-constant
domain. The corresponding Fourier transform (FT) shown
in Fig. 3(a) displays the frequency bandwidth of the input
and of the output for modulation frequencies fm ¼ 10, 12,
15 kHz. The wave motion wðx; tÞ in the time-constant
waveguide can be represented in the frequency–wave-
number domain Ŵðκ;ωÞ, which is obtained through spatial
and temporal FT (2D-FT) [37]. The contour plots of the
magnitude jŴðκ;ωÞj in Figs. 3(b)–3(d) effectively locate
the spectral content of the wavefield along the theoretical
dispersion branches. The κ > 0 region corresponds to
forward (incident) waves, while the κ < 0 half plane is
associate with backward (reflected) waves. This represen-
tation effectively illustrates how, at the interface, an
incident broadband wave is converted into a reflected
narrow-band wave centered at fm=2. For reference, the
half-power bandwidth of input and output is approximately
3.4 and 0.8 kHz, respectively, which corresponds to a
output-to-input bandwidth ratio of approximately 24% for
all considered modulation frequencies. Notably, the output
center frequency is always at fm=2, which illustrates the
twofold effect of the time modulation on the reflected
wave: a frequency conversion and a bandwidth reduction.
Time-periodic stiffness modulation of the elastic

waveguide is implemented by employing an array of

FIG. 2. Concept of a single-port system converting a broadband
input into a narrow-band output through time-modulation. An
incoming broadband wave is converted into a narrow-band output
at a frequency defined by the modulation frequency ωm ¼ 2π=Tm,
which can be used as a tuning parameter for selecting the output
frequency content.
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FIG. 3. Numerical results for the response of the single-port system for three modulation frequencies (fm ¼ 10, 12, 15 kHz). (a) Single
point FTs show that a broadband input (black solid line) is converted into narrow-band outputs centered at fm=2: fm ¼ 10 kHz (red
dashed line), fm ¼ 12 kHz (blue solid line), and fm ¼ 15 kHz (green dash-dotted line). (b)–(d) Normalized 2D-FT magnitude
jŴðκ;ωÞj associated with the wave field wðx; tÞ shows narrow-band frequency reflection of the reflected waves in the κ < 0 half plane at
fm=2, which is in agreement with the location of the flat branches predicted theoretically (gray lines).
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piezoelectric patches bonded to the beam and shunted
through an electrical impedance (Fig. 4). The resulting
electromechanical waveguide has an effective elastic
modulus defined by the electrical impedance of the shunt-
ing circuit [38,39], which is the result of the strain-voltage
coupling inherent to the piezoelectric effect. Resonant
shunting circuits have been exploited to induce tunable
band gaps in beam waveguides [40], while broadband
stiffness control has been achieved through NC circuits

[41]. According to Refs. [41,42], the elastic modulus ESU
p

of a piezoelectric patch connected to a NC circuit with
capacitance −C0 is given by:

ESU
p ¼ EE

p
C0 − CT

p

C0 − CS
p
; ð7Þ

where EE
p is the elastic modulus of the piezoelectric patch

with short-circuited electrodes, CT
p and CS

p ¼ CT
pð1 − k231Þ,

respectively, are the stress-free and strain-free piezoelectric
capacitance values, and k31 is the piezoelectric coupling
coefficient for the longitudinal straining of a through-the-
thickness polarized patch. Values of C0 > CT

p ensure
stability of the patch [33], while producing significant
changes in the elastic modulus with respect to the open
circuit value ED

p ¼ EE
p=ð1 − k231Þ for jC0j → 0. The negative

impedance converter circuit of Fig. 4(a) implements a
capacitance CN ¼ −C0 ¼ −R2=R1C [41], where the resis-
tor R0 prevents saturation of the capacitor, which would
lead to instability [42]. Operating a switch that breaks the
series connection between the piezoelectric transducer
and the NC shunt can vary the equivalent elastic modulus
of the patch between the closed circuit (ESU

p ) and the open
circuit (ED

p ) values [Eq. (7)]. Periodic on-off operation of
the switch at period Tm induces a square-wave stiffness
modulation at the fundamental frequency ωm ¼ 2π=Tm.
Based on beam configuration, and shunted piezoelectric
parameters, the modulation amplitude obtained is
αm ≈ 0.14, which is estimated according to the procedure
described in the Supplemental Material [43].
The experiments employ an array of 11 pairs of piezo-

electric patches bonded to portion of a slender aluminum
beam with rectangular cross section at regular spatial
intervals (Fig. 4). All patches are connected in series to
NC shunts (see Supplemental Material [43] for details on
experimental setup). The beam is excited by a piezoelectric
transducer bonded at its free end, which induces a trans-
versely polarized wave propagating along the length. The

(a)

(b)

FIG. 4. Experimental setup for observation of the time-
modulation of the stiffness in a beam through negative capaci-
tance shunts and switches. (a) The beam is equipped with 11 pairs
of piezoelectric patches, each connected to a NC circuit. (b) A
switch opens and closes the patch-NC circuit series with a
periodic law, inducing the stiffness to vary between two values
with period Tm.
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FIG. 5. Experimental results for the response of the beam waveguide for three modulation frequencies (fm ¼ 10, 12, 15 kHz).
(a) Single point FTs show the conversion of a broadband input (black solid line) into narrow-band outputs centered at fm=2: fm ¼
10 kHz (red dashed line), fm ¼ 12 kHz (blue solid line), and fm ¼ 15 kHz (green dash-dotted line). (b)–(d) Normalized 2D-FT
magnitude jŴðκ;ωÞj associated with the wave field wðx; tÞ shows a narrow-band frequency reflection of the reflected waves in the κ < 0
half plane at fm=2, which is in agreement with the location of the flat branches predicted theoretically (gray lines).
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corresponding velocity field wðx; tÞ is measured by a
scanning laser Doppler vibrometer (SLDV). The recorded
spatiotemporal wave field wðx; tÞ is analyzed in the
frequency–wave-number domain, where incident and
reflected components are separated by identifying forward
and backward propagating wave fields. This allows the
separation of input wðinÞðxp; tÞ and output wðoÞðxp; tÞ
components at the probe location xp, which, as in the
numerical investigations, is located near the interface.
Three experiments are performed by inducing a broad-

band excitation signal centered at 5 kHz, while modulating
the effective stiffness at frequency fm ¼ 10, 12, 15 kHz.
The analysis of the frequency spectrum of incident and
reflected waves at the probe location [Fig. 5(a)] confirms
that the reflected waves are characterized by a reduced
bandwidth and centered at fm=2. The half-power band-
width of input and output signals is again evaluated in order
to quantify the output-to-input bandwidth ratio. The input
bandwidth is 3.2 kHz, while the output bandwidth is,
respectively, 1.25, 1.14, and 1.61 kHz for fm ¼ 10, 12,
15 kHz. These correspond to 40%, 35%, and 50% output-
input bandwidth ratios. Time modulation effects in terms of
bandwidth and center frequency are also illustrated in the
contour plots of Figs. 5(b)–5(d). While the dispersion
branch associated with the incident wave in the κ > 0
region remains effectively unaltered in all three experi-
ments, the reflected wave in the κ < 0 region is narrow
band and centered at 5,6,7.5 kHz. We conclude that the
system indeed behaves as predicted by it converting the
broadband signal into a narrow-band signal at center
frequency fm=2.
In conclusion, we investigated time modulation effects in

terms of reflected bandwidth and center frequency, and
observed them experimentally for the first time through an
electromechanical waveguide consisting of a beam in
transverse motion, with an array of piezoelectric patches
connected to switchable NC shunts. This enables control
and periodic modulation of stiffness according to a square-
wave law. Numerical and experimental results confirm the
analytical predictions in terms of the existence of a wave
number band gap characterized by flat real frequency bands
and a nonzero imaginary frequency component. In the
presence of an interface, this produces the selective
reflection of an incident broadband wave at integer multi-
ples of half the modulation frequency, which is a tuning
parameter that determines the frequency content of
reflected waves. The findings suggest an application of
the concept as a single-port filtering device that can be
tuned through the selection of the modulation frequency,
and that may be implemented in acoustic, mechanical, or
photonic platforms. The experimental implementation also
provides a platform that allows the exploration of several
unique properties associated with time and/or space modu-
lation, including filtering, frequency conversion, nonreci-
procity, PT symmetry, and topological pumping.
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