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Photons in a ring-shaped vortex light beam can have an arbitrarily high orbital angular momentum
(OAM) lℏ, in addition to the spin angular momentum �ℏ. For a pulsed vortex beam, there is, however, an
upper bound to the integer units l of OAM, or topological charge of the vortex, and a lower bound to the
pulse duration to carry OAM. These limits have implications in experiments with ultrashort vortices, e.g., in
the generation of twisted attosecond bursts in the extreme ultraviolet, in the temporal resolution in ultrafast
spectroscopy, or in the performance of OAM-based optical communications or cryptographic systems, as
well as in other areas of physics as acoustics or electron waves.
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An optical vortex beam is a light beam with a phase
variation e−ilϕ in the azimuthal direction ϕ perpendicular to
the propagation direction of the beam, say, z. At the beam
center, r ¼ 0, the phase is undetermined, and the optical
field strength vanishes, which endows the beam with a ring
structure. The integer number l, called a topological charge,
can take arbitrarily high positive or negative values and
determines the orbital angular momentum (OAM) lℏ per
photon of the beam [1,2]. Archetypical vortex beams are
Laguerre-Gauss (LG) beams, easily produced using fork-
type gratings or spiral phase plates [2]. Recognizing the
existence of these new and unlimited degrees of freedom of
the photons in a beam as familiar as a LG beam [1] was a
substantial advance in optics with ramifications in other
fields such as astrophysics [3] or medicine [4], with
applications such as optical tweezers [5], laser ablation
[6], or classical and quantum information processing [7,8].
The unboundedness of l seems to be corroborated by the
feasibility of generating beams with up to 104ℏ OAM per
photon [9].
With ultrashort pulses, these applications acquire, in

addition, ultrafast resolution. The generation of shorter and
shorter ring-shaped pulses carrying vortices has had to
overcome practical difficulties such as the spatial, group
velocity, and topological charge dispersion introduced by
gratings and spiral phase plates [10–12]. Nonetheless, the
few-cycle regime has already been achieved [13,14], and in
strong-field physics these ring-shaped pulses are used to
excite high harmonics and extremely short attosecond
pulses with vortices of high topological charge [15–17].
In this Letter, we show that there is a fundamental

restriction to the topological charge of the vortex, and hence
to the OAM, carried by a pulse. As a reference, the
topological charge of a single-cycle pulse (according to
the standard definition [18]) is jlj ¼ 27 as much. This
restriction implies that there exist minimal wave packets
able to carry an l-charged vortex. In Ref. [19], a limitation

to the OAM in a single-cycle (subcycle according to
Ref. [18]) X wave with an exponentially decaying spectrum
is described. Intuitively, the idea of unlimited OAM,
involving an arbitrary number of intertwined helical phase
fronts in the case of monochromatic LG beams [2], is
hardly reconciled with arbitrarily short pulses, for which
the concept of phase fades away. Here, a proof of a precise
limit for general pulse shapes in the actual beam geometries
in experiments is provided.
Suppose we have overcome all the technical difficulties

[10–12] and synthesized the ring pulsed beam (RPB)
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all them of the same topological charge l, and zero radial
order, but different frequencies ω and weights âω. In the
above equations, and in the introduction, ðr;ϕ; zÞ are
cylindrical coordinates, t0 ¼ t − z=c is the local time, c
is the speed of light in a vacuum, qωðzÞ ¼ z − izR;ω is the
complex beam parameter, ψωðzÞ ¼ tan−1ðz=zR;ωÞ, sωðzÞ ¼
sω
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is the waist width of

the fundamental Gaussian beam (l ¼ 0), and zR;ω is the
Rayleigh distance. Additionally, the complex beam param-
eter is usually written as
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where 1=RωðzÞ ¼ z=ðz2 þ z2R;ωÞ is the curvature of the
wave fronts. Being limited to positive frequencies, the
optical field E in Eq. (1) is the analytical complex
representation of the real optical field RefEg [20]. Since
Eq. (1) vanishes at r ¼ 0 and r → ∞, it will feature a bright
ring about a certain radius. It is natural to identify, from
both a theoretical and an applicative point of view, the pulse
shape of the RPB with that at the bright ring, or at the
brightest if there are several. As said, we analyze if this
pulse shape and the topological charge l can be taken
arbitrarily or there is some kind of restriction.
A prerequisite to talk about the pulse shape of a vortex-

carrying pulse is that it remains unchanged during propa-
gation (except for a global complex amplitude, as usually
understood). Figure 1 illustrates the situation with the usual
model with a factorized field in space and time at the focus
or waist z ¼ 0, in which the Gaussian waist width sω ≡ s is
independent of the frequency [15]. While for a few-cycle
pulsed Gaussian beam (l ¼ 0) the pulse shape on its
maximum (at r ¼ 0) is substantially unaltered [21,22],
the same few-cycle pulse on the bright ring of a RPB
widens and distorts, particularly for high jlj, as seen in
Fig. 1. The origin of this distortion is a dispersion,
particularly enhanced for high jlj and for short pulses,
induced by Gouy’s phase when zR;ω depends on the
frequency, as it is in the factorized model. Similar
dispersion affects at sufficiently high jlj the pulse shape
in any other model in which zR;ω depends on the frequency.
Thus, the so-called isodiffracting model [23–26] in which
zR;ω ≡ zR is independent of the frequency becomes par-
ticularly relevant as the only type of RPB for which an
ultrashort pulse can maintain its shape during propagation
irrespective of the value of jlj. With ω-independent zR,
ψωðzÞ≡ ψðzÞ, qωðzÞ≡ qðzÞ, and RωðzÞ≡ RðzÞ are also ω
independent, and the Gaussian width sωðzÞ is inversely
proportional to the square root ω.
For our analysis, we introduce the diffraction and

azimuthal factor Dðz;ϕÞ¼ e−ilϕe−ðjljþ1ÞψðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðz=zRÞ2

p

and the scaled radius ρ ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zRc½1þ ðz=zRÞ2�

p
at each

distance z. The constant ρ represents a hyperboloid of
revolution about the z axis, also called a caustic surface,
along which the ring pulse spreads. Using Eq. (3) and the
expressions of sωðzÞ and sω above, the integral in Eq. (1)
with Eq. (2) is conveniently written as
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âωωjlj=2e−ρ2ωe−iωt00dω; ð4Þ

where t00 ≡ t0 − r2=2cRðzÞ and where it is seen that the
pulse shape depends on the particular caustic surface ρ but
does not change on propagation, being only attenuated by
the diffraction factor in D. If at z ¼ 0 the pulse peaks at the
time t0 ¼ 0, it does at z ≠ 0 at the time determined by
t00 ¼ t0 − r2=2cRðzÞ ¼ 0, which defines a spherical pulse
front of radius RðzÞ at each distance z.
We first find the expression of a RPB with a certain pulse

shape PðtÞ ¼ ð1=πÞ R∞0 P̂ωe−iωtdω and frequency spec-
trum P̂ω at a particular caustic surface ρp. Equating
Eq. (4) particularized at ρp to DPðtÞ, we get

âω ¼ eρ
2
pωω−jlj=2ð ffiffiffi

2
p

ρpÞ−jljP̂ω, and Eq. (4) becomes
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Its spectrum Êω ¼ Dðρ=ρpÞjljP̂ωe−ðρ
2−ρ2pÞω at ρ > ρp

(ρ < ρp) is a redshifted (blueshifted) version of P̂ω.
Next, we identify the bright caustic surface as that

where the pulse energy is maximum. The energy per unit
transverse area, or fluence, is given by Eðr; zÞ ¼R∞
−∞ðReEÞ2dt ¼ ð1=2Þ R∞−∞ jEj2dt ¼ ð1=πÞ R∞0 jÊωj2dω
and for the RPB in Eq. (5) by

E ¼ jDj2
�
ρ

ρp

�
2jlj 1

π

Z
∞

0

jP̂ωj2e−2ðρ2−ρ2pÞωdω: ð6Þ

Differentiating with respect to ρ, we obtain, after some
algebra, dE=dρ ¼ E½2jlj − 4ρ2ω̄ðρÞ�=ρ, where

ω̄ðρÞ ¼
R
∞
0 jP̂ωj2e−2ðρ2−ρ2pÞωωdωR∞
0 jP̂ωj2e−2ðρ2−ρ2pÞωdω

ð7Þ

is the mean frequency of the pulse at the caustic ρ. Thus, a
caustic surface ρs of maximum or minimum energy density
satisfies ρ2s ¼ jlj=2ω̄ðρsÞ. The second derivative of the
energy profile can be similarly evaluated and, at the maxima
or minima ρ2s¼jlj=2ω̄ðρsÞ, is given by d2E=dρ2jρs ¼
−8EðρsÞω̄ðρsÞf1 − jlj½σ2ðρsÞ=ω̄2ðρsÞ�g, where

FIG. 1. Propagation of the pulsed LG disturbance
Eðr;ϕ; 0; tÞ ¼ PðtÞð ffiffiffi

2
p

r=sÞjlj expð−r2=s2Þ expð−ilϕÞ. Dashed
gray curve: Envelope of the single-cycle pulse PðtÞ ¼
sinc2ðt=TÞ expð−iω0tÞ, ω0 ¼ 2.417 fs−1, and T ¼ 3.9 fs. Black
curves: For the indicated values of jlj, a pulse envelope at the
bright ring at one Rayleigh distance. Peak values are set to unity
and shifted to t ¼ 0 for better comparison.
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σ2ðρÞ ¼
R∞
0 jP̂ωj2e−2ðρ2−ρ2pÞω½ω − ω̄ðρÞ�2dωR

∞
0 jP̂ωj2e−2ðρ2−ρ2pÞωdω

ð8Þ

is the variance of the pulse spectrum at each caustic ρ.
Thus, the caustic ρs has a maximum of energy if jlj <
ω̄2ðρsÞ=σ2ðρsÞ and a minimum if jlj > ω̄2ðρsÞ=σ2ðρsÞ.
Then, for PðtÞ to be the pulse shape at a caustic of

maximum or minimum energy, it must be located at
ρ2p ¼ jlj=2ω̄, where ω̄≡ ω̄ðρpÞ is the mean frequency of
PðtÞ. The caustic is of maximum pulse energy if

jlj < ω̄2=σ2; ð9Þ

where σ2 ≡ σ2ðρpÞ is the variance of the pulse spectrum,
and of minimum energy if jlj > ω̄2=σ2. In the latter case,
for a continuous energy profile vanishing at ρ ¼ 0 and at
ρ → ∞, there must exist at least two maxima ρs surround-
ing the minimum at ρp. In any of these maxima, e.g., the
global maximum, the condition of maximum jlj <
ω̄2ðρsÞ=σ2ðρsÞ is satisfied by the pulse shape at that
maximum. In conclusion, all RPBs verify restriction (9)
between its topological charge and the pulse shape at its
bright ring.
With the unscaled radius r, the bright caustic

ρ2p ¼ jlj=2ω̄ reads rp ¼ ffiffiffiffiffiffiffiffiffijlj=2p
sω̄ðzÞ, where sω̄ðzÞ ¼

sω̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
and sω̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2zRc=ω̄
p

. Also, expression
(5) with ρ2p ¼ jlj=2ω̄ can more explicitly be written, using
Eq. (3) for the frequency ω̄, as

Eðr;ϕ; z; t0Þ ¼ e−iðjljþ1ÞψðzÞe−ilϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð z

zR
Þ2

q � ffiffiffiffiffi
2

jlj

s
r

sω̄ðzÞ
�jlj

× P

�
t0 −

r2

2cqðzÞ þ i
jlj
2ω̄

�
: ð10Þ

This equation describes a RPB of pulse shape PðtÞ of
maximum energy at rp ¼ ffiffiffiffiffiffiffiffiffijlj=2p

sω̄ðzÞ if PðtÞ is chosen to
satisfy σ2=ω̄2 < 1=jlj. Otherwise, Eq. (10) is only an
unpractical way to specify a RPB of a different pulse
shape of maximum energy such that σ2=ω̄2 < 1=jlj at
another location. We stress that inequality (9) holds for
arbitrarily short pulse forms, not only those having a
physically meaningful carrier frequency ω̄ and envelope
AðtÞ ¼ PðtÞeiω̄t, i.e., at least one carrier oscillation in the
FWHM of jPðtÞj2 [18]. Restriction (9) involves only the
spectral density jP̂ωj2 and not other characteristics such
as the pulse duration. In particular, the topological
charge is equally limited for a transform-limited pulse
and for a temporally broadened pulse with inhomogeneous
spectral phases. Also, the square root of the variance, σ, is
usually too small to measure the pulse bandwidth, even
the half bandwidth, but Δω≡ 2σ is the so-called

Gaussian-equivalent half width (1=e2 decay for
Gaussian-like jP̂ωj2). In terms of Δω, inequality (9) reads
jlj < 4ω̄2=Δω2.
Figure 2 is an example that helps to understand the

precise meaning of this result. We try to synthesize RPBs of
increasing topological charge but fixed pulse shape at their
bright ring, the single-cycle pulse in Fig. 2(a). For this
pulse, jlj must be smaller than ω̄2=σ2 ¼ 22.5. Figure 2(b)
represents energy profiles for different values of jlj, with
the vertical lines of the same color placed at r=sω̄ðzÞ ¼ffiffiffiffiffiffiffiffiffijlj=2p

. With low jlj, the energy has a single maximum at
the expected radius r=sω̄ðzÞ ¼

ffiffiffiffiffiffiffiffiffijlj=2p
(red). A secondary

FIG. 2. (a) Real pulse and envelope of PðtÞ ¼
sinc2ðt=TÞ expð−iω0t − iπ=2Þ with ω0 ¼ 2.417 fs−1 (780 nm
wavelength) and T ¼ 3.9 fs [single-cycle pulse with one carrier
period 2π=ω0 in its FWHM of intensity jPðtÞj2]. Its spectrum
P̂ω ¼ ðT=2Þtri½2Tðω − ω0Þ=π� (normalized to its peak value) is
shown in the inset [sincðxÞ≡ sinðπxÞ=πx, and triðxÞ≡ 1 − x in
0 < x < 1, 1þ x in −1 < x < 0, and 0 for jxj > 1]. For this
pulse, ω̄ ¼ ω0 and σ2 ¼ 0.26 fs−2, yielding jlj < ω̄2=σ2 ¼ 22.5.
(b) Energy profiles (normalized to the peak value in each case) of
the RPBs in Eq. (10) with the indicated values of jlj. The vertical
dashed lines are placed at

ffiffiffiffiffiffiffiffiffijlj=2p
. (c) Real part and modulus of

PðtÞ in Eq. (11) with ω̄ ¼ 2.417 fs−1, α ¼ 11.25 (slightly sub-
cycle pulse) and Φ ¼ π=2, and its spectrum in the inset. For this
pulse, σ2 ¼ 0.26 fs−2, and jlj < ω̄2=σ2 ¼ 22.5, as in (a). (d) The
same as in (b) but for the pulse in (c).
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hump begins to emerge with jlj ≃ 15 (blue) and becomes a
maximum with jlj ¼ 17 (orange), and the absolute maxi-
mum with jlj ¼ 18 (purple), while the original maximum
remains at r=sω̄ðzÞ ¼

ffiffiffiffiffiffiffiffiffijlj=2p
. With jlj ¼ 23 (green), the

maximum at r=sω̄ðzÞ ¼
ffiffiffiffiffiffiffiffiffijlj=2p

turns, as predicted, into a
minimum, because a new, very weak maximum emerges on
its left. This example confirms the validity of inequality (9)
and illustrates that this inequality is not sharp in this
example, but there is a lower upper bound jlj < 18 for
this pulse.
This observation poses the question of whether there

exist optimal OAM carrier pulses for which inequality (9) is
sharp, i.e., jlj can reach the integer part of ω̄2=σ2. We have
found that this is the case of the pulses

PðtÞ ¼
�

−iα
ω̄t − iα

�
αþ1=2

e−iΦ; ð11Þ

with α > 1=2 and Φ an arbitrary phase. Equation (11) is a
convenient way to express the commonly used pulses
with the power-exponential (PE) spectrum [19,24,25]
P̂ω ∝ ðω=ω̄Þα−1=2e−αω=ω̄e−iΦ, where the mean frequency
appears explicitly. The pulse shape is fully determined by
the parameter α and then scaled by ω̄. The (Gaussian-
equivalent) half bandwidth Δω ¼ 2σ ¼ ffiffiffiffiffiffiffiffi

2=α
p

ω̄ and half
duration Δt ¼ ffiffiffiffiffiffi

2α
p

=ω̄ verify ΔtΔω ¼ 2. For the lowest
values of α, Eq. (11) has no physically meaningful carrier
and envelope. With increasing α, Eq. (11) approaches a
Gaussian-enveloped pulse of an increasing number of
oscillations and Gaussian duration Δt, Φ becoming the
carrier-envelope phase; e.g., a Gaussian-like, single-cycle
pulse corresponds to α ≃ 13.75. With this class of pulses,
inequality (9) simply reads jlj < 2α. For the pulse with
α ¼ 2.5 in Ref. [19], we obtain jlj < 5, which is in line with
the value jlj < 4 obtained in Ref. [19] for X waves, in spite
of the different beam geometry. For the standard single-
cycle pulse with α ¼ 13.75, jlj < 27.5; i.e., it can carry up
to 27 units of OAM. The energy density of the RPB,
normalized to its peak value at z ¼ 0,

Eðr; zÞ ¼ jDj2
�
2

jlj
r2

s2ω̄ðzÞ
�jlj
 

α
r2

s2ω̄ðzÞ −
jlj
2
þ α

!
2α

; ð12Þ

is seen to feature for all jlj < 2α one and only one
maximum at r=sω̄ðzÞ ¼

ffiffiffiffiffiffiffiffiffijlj=2p
. For comparison with

Figs. 2(a) and 2(b), the PE pulse in Fig. 2(c) is chosen
to have α ¼ 11.25 so that inequality (9) yields the same
limitation jlj < 22.5. The curves and vertical lines in
Fig. 2(d) are the energy profiles with a single maximum
at r=sω̄ðzÞ ¼

ffiffiffiffiffiffiffiffiffijlj=2p
up to jlj ¼ 22 (instead of 18 in the

preceding example) and with a minimum for jlj > 22
surrounded by infinite maxima, thus lacking physical
meaning. Equation (9) being a sharp inequality for a class
of pulses, it cannot be improved for general RPBs.

For our last considerations, we note that the RPB (10)
with the PE pulse (11) in its bright ring if jlj < 2α has the
peculiarity of having the same PE pulse shape, i.e., the
same α, at all caustics, being simply scaled to the blue-
shifted [for r=sω̄ðzÞ <

ffiffiffiffiffiffiffi
l=2

p
] or redshifted [for r=sω̄ðzÞ >ffiffiffiffiffiffiffi

l=2
p

] mean frequency ω̄ðrÞ ¼ ω̄=f1 − ½r2=s2ω̄ðzÞ−
jlj=2�=αg. It then makes sense to talk about the pulse
shape of the RPB as a whole.
An implication of the above results is that there exist

minimal wave packets that can carry an l vortex and, in
particular, a minimal wave packet that can carry a single
vortex. Given jlj, the Gaussian-equivalent bandwidth of the
pulse at the bright ring satisfies Δω=ω̄ < ð2= ffiffiffiffiffijljp Þ, an
inequality saturated by the RPB with the PE pulse with
α ¼ jlj=2þ ϵ, ϵ → 0, of duration Δt ¼ 2=Δω. We then
obtain the inequality ω̄Δt >

ffiffiffiffiffijljp
limiting the duration of

any RPB. Figure 3 shows shortest l-vortex-carrying pulses,
that is, Eq. (11) with α ¼ jlj=2þ ϵ, and their duration in the
inset. At all caustics, the pulse shape is the same with
the replacement ω̄ → ω̄ðrÞ. These shortest, l-dependent
RPBs can be also obtained by setting, as in Ref. [19],
l-independent weights âω ∝ ðω=ω̄Þϵ−1=2e−ϵðω=ω̄Þ of the
LG beam constituents. Coupling of the temporal and
OAM degrees of freedom [19] makes the spectrum
P̂ω ∝ ðω=ω̄Þϵþjlj=2−1=2e−ðϵþjlj=2Þðω=ω̄Þ, and the correspond-
ing pulse shapes in Fig. 3, adapt to support the vortex of
charge l.
In conclusion, settling a limit to the degrees of freedom

of OAM in ultrashort pulses, or to the duration of pulses
with OAM, has an impact in all fields where they are
employed. In superdense optical communication systems, it
implies a restriction to the OAM-based channels, and hence
to their communication capacity [7], in quantum informa-
tion, a limitation to multidimensional entanglement of
OAM states for quantum cryptography [8]. Extreme ultra-
violet attosecond pulses with high OAM generated via
strong-field light-matter interactions [16,17] are also sub-
ject to these limitations, as well as, to mention a few waves
of a different nature, electron beams with high OAM for
electron microscopy [27] and ultrasound transient vortices
in acoustics [28].

FIG. 3. Shortest l-vortex-carrying pulses. The higher the
charge, the longer the minimum pulse duration Δt ¼ ffiffiffiffiffijljp

=ω̄
needed, as seen in the inset.
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