
 

Improved Test of Local Lorentz Invariance from a
Deterministic Preparation of Entangled States

Eli Megidish, Joseph Broz, Nicole Greene, and Hartmut Häffner
Department of Physics, University of California, Berkeley, California 94720, USA

(Received 30 August 2018; published 29 March 2019)

The high degree of control available over individual atoms enables precision tests of fundamental
physical concepts. In this Letter, we experimentally study how precision measurements can be improved by
preparing entangled states immune to the dominant source of decoherence. Using 40Caþ ions, we explicitly
demonstrate the advantage from entanglement on a precision test of local Lorentz invariance for the
electron. Reaching the quantum projection noise limit set by quantum mechanics, we observe, for bipartite
entangled states, the expected gain of a factor of two in the precision. Under specific conditions,
multipartite entangled states may yield substantial further improvements. Our measurements improve the
previous best limit for local Lorentz invariance of the electron using 40Caþ ions by a factor of two to four to
about 5 × 10−19.
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Quantum entanglement can be harnessed to enhance the
measurement precision beyond the standard quantum limit
[1–7]. In particular, demonstrations with photons [8,9] and
atomic systems [10,11] have reached the fundamental
Heisenberg limit. However, translating these techniques
into actual improvements of precision measurements or
fundamental tests appears to be difficult. One reason is that
the correlation between the particles, which enhances the
precision, is also prone to decoherence, often negating the
advantage of entanglement [12–15]. On the other hand,
quantum correlations can not only be used to improve the
signal but also to engineer a quantum state insensitive to
certain noise sources and still sensitive to the desired
quantity, thereby improving high precision measurements
[16–18]. Probabilistic preparation of entangled states [17]
and the resulting metrological improvement have been
presented previously [18]. Here, we study how, in this case,
moving from a separable quantum state created by a
probabilistic source [17,18] to an entangled state, as used
in Ref. [16], improves the signal-to-noise ratio of a test of
the local Lorentz invariance (LLI) of the electron.
LLI-violation effects can be classified in the framework

of the standard model extension [19]. In particular, the
Lagrangian describing the electron is modified to allow for
local Lorentz violations while maintaining all other sym-
metries. In the nonrelativistic limit, this can be described by
the effective Hamiltonian [18–20]:

δH ¼ −Cð2Þ
0

p2 − 3p2
z

6me
ð1Þ

whereme, p, and pz are the electron mass, the electron total
momentum, and the momentum projection along the

quantization axis, respectively. The Cð2Þ
0 parameter contains

elements of the symmetric, traceless, and frame dependent
CMN tensor quantifying the LLI violation [20]. We use the
Sun-centered celestial reference frame (SCCEF) indicated
with coordinate indices (T, X, Y, Z) to uniquely specify the
CMN values.
To date, the most sensitive LLI tests for electrons have

been published with Dy atoms [20] and Caþ ions [18].
Theoretical calculations show that similar measurements
using Ybþ can improve the existing bound considerably
[21], and the measurements underway are expected to be
published soon [22] by the PTB group at Braunschweig.
Recently, it was also suggested to use dynamical decou-
pling techniques to suppress magnetic field noise, making
single ions, neutral atoms, and highly charged ions attrac-
tive for LLI-violation searches [23].
The hypothetical LLI energy shift for the 2D5=2 manifold

in 40Caþ is characterized by [18]

ELLI=h ¼ Cð2Þ
0 ½2.16 × 1015 − 7.42 × 1014m2

J�Hz ; ð2Þ
where mJ is the projection of the total angular momentum
on the magnetic field. For a maximal LLI sensitivity, we
prepare an ion in a superposition of jD�1=2i ¼ j2D5=2;
mJ ¼ �1=2i and jD�5=2i ¼ j2D5=2; mJ ¼ �5=2i parallel
and orthogonal to the magnetic field, respectively. The
orientation of the magnetic field is fixed with respect to the
Earth’s frame, and hence the rotation of the Earth will rotate
the orientation of the electronic wave function with respect
to the SCCEF frame. Thus, spacelike hypothetical LLI
violations will modulate the phase between the two
amplitudes with 12 and 24 h periodicities. For single ions,
the main sources of electronic decoherence are magnetic
field fluctuations. To suppress this noise, we use two
trapped ions labeled 0 and 1 in the state:

PHYSICAL REVIEW LETTERS 122, 123605 (2019)

0031-9007=19=122(12)=123605(5) 123605-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.123605&domain=pdf&date_stamp=2019-03-29
https://doi.org/10.1103/PhysRevLett.122.123605
https://doi.org/10.1103/PhysRevLett.122.123605
https://doi.org/10.1103/PhysRevLett.122.123605
https://doi.org/10.1103/PhysRevLett.122.123605


jψ0;1i ¼ 1=
ffiffiffi
2

p
ðjD0

5=2; D
1
−5=2i þ jD0

1=2; D
1
−1=2iÞ: ð3Þ

This is a decoherence free state with respect to global
magnetic field fluctuations because the magnetic moments
of both ions point in opposite directions [16].
For the experiments, we trap two 40Caþ ions in a radio-

frequency Paul trap. The quantization axis is defined by a
permanent magnet generating a magnetic field of 3.72 G
oriented ∼68° east of north. The most relevant vibration
mode of the ion crystal is the axial c.m. mode at ∼830 kHz,
which is used to entangle the ions. A 729 nm narrow
linewidth laser light is used to address Zeeman transitions
between the 2S1=2 and 2D5=2 states. One 729 nm beam,
aligned along the trap axis, couples to both ions. A
perpendicular second beam, termed the local beam, is
tightly focused to address only one of the ions with less
than 1% laser intensity leakage onto the other ion. The
electronic state of the ions is detected by collecting photons
scattered from the 2S1=2 → 2P1=2 transition.
The state preparation starts with Doppler cooling fol-

lowed by optical pumping of both ions to the jS−1=2i ¼
j2S1=2; mJ ¼ −1=2i state using laser light on the jS1=2;
mJ ¼ 1=2i ↔ jD5=2; mJ ¼ −3=2i and jD5=2i ↔ jP3=2i
transitions [24]. To achieve high fidelity operations, we
further cool the axial c.m. and stretch modes to the ground
state using sideband cooling. Finally, using the local beam,
we optically pump ion no. 0, using the same scheme as
for initialization, into the opposite spin state preparing the
jS01=2; S1−1=2i state with a fidelity of > 99%, where the
superscript indicates the ion and the subscript the magnetic
quantum number.
To entangle the ions prepared in the different spin states,

jS01=2; S1−1=2i, we apply the Mølmer-Sørensen (MS) scheme
[25] in a similar manner as what has been done to entangle
different ion species [26,27]. In particular, we generate two
sets of two bichromatic laser fields, with each centered
around the jS1=2i → jD1=2i (C3) and the jS−1=2i → jD−1=2i
(C4) carrier transitions. [see Fig. 1(a)]. Each set consists of
two tones each (δMS ¼ 10 kHz) detuned from the c.m. red
sideband and blue sideband of the respective carrier
transition [Fig. 1(a)]. Thus, ion no. 0 can only be resonantly
excited to the jD1=2i state if, simultaneously, ion no. 1 is
excited to the jD−1=2i, and vice versa.
We measured the population evolution under the applied

laser fields [Fig. 1(b)]. Both ions are rotated from the initial
state to the entangled state:

jS01=2; S1−1=2i → 1=
ffiffiffi
2

p
ðjS01=2; S1−1=2i þ jD0

1=2; D
1
−1=2iÞ: ð4Þ

Due to the small detuning δMS from the sideband tran-
sitions, the jS01=2D1

−1=2i and jD0
1=2S

1
−1=2i states are tran-

siently populated. We carefully adjust the laser powers
such that, at the gate time of tg ¼ 1=δMS ¼ ð106� 5Þ μs,

the nondesired states are depopulated and an equal super-
position is achieved [28,29]. We further need to take
into account that the presence of the four laser tones
induces substantial ac-Stark shifts on the respective
carrier transitions on the order of 10 kHz [30]. To counter
those, we introduce frequency offsets for each pair of
sideband transitions and adjust them to maximize the
gate fidelity.
To quantify the gate fidelity, we measure the coherence

between the two amplitudes in Eq. (4). We apply local π=2
rotations on the respective carrier transitions and measure
the parity [31]. From the amplitudes of the entangled state
before the rotation and the parity fringe amplitude, we
calculate the gate fidelity to be 94%. The gate fidelity is
limited by ∼5% laser intensity noise, which creates ac-
Stark fluctuations leading to phase fluctuations in the
entangled state in Eq. (4). We estimate that this reduces
the fidelity by ∼2.5%. A large fraction of the remaining
infidelity is likely due to laser frequency noise.
In order to prepare the LLI target state given in Eq. (4),

we apply carrier rotations on the jS�1=2i → jD�5=2i tran-
sitions, labeled as C1 and C2, respectively. In particular,
RC1ðπÞ rotates the jS−1=2i population to jD−5=2i and RC2ðπÞ
rotates the jS1=2i population to jD5=2i [(see Fig. 2(a)].
The LLI target state evolves for a duration τ, accumu-

lating a phase ϕ between the two amplitudes. Measuring
the phase ϕ is accomplished by a parity measurement
similar to that used for assessing the quality of the MS gate
described before. We first rotate the LLI state to the
Sj1=2j; Dj1=2j subspace using RC1ðπÞ and RC2ðπÞ and then
apply RC3ðπ=2;φÞ and RC4ðπ=2;φÞ to interfere the ampli-
tudes; see Fig. 2(a). Note that the phases on C3 and C4 are
defined with respect to the phase of the effective carrier
transition used in the MS gate. The resulting parity is a
function of the phase ϕþ 2φ between both energy eigen-
states and the laser phases according to

P ¼ A cos ðϕþ 2φÞ; ϕ ¼ ΔEτ=ℏ ¼ 2πfτ; ð5Þ

(a) (b)

FIG. 1. MS gate scheme. (a) Laser field tones (colored arrows)
applied to the ions to generate the MS gate, where black lines
represent atomic resonances and motion sidebands transitions.
(b) Population dynamics, measured and theory (solid lines), as
functions of the pulse duration of the applied laser fields.
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where A is the interference amplitude. We calculate the
phase ϕ from the interference amplitude and by measuring
the parity at two consecutive zero crossings of the laser
phase labeled φ ¼ φ0; ðφ0 þ 90°Þ [see Fig. 2(b)]. The
accumulated phase ϕ is proportional to the wait time
τ and the energy difference ΔE ¼ hf between the
jD0

1=2D
1
−1=2i and jD0

5=2D
1
−5=2i states.

The accuracy of the phase measurement is proportional
to the coherence of the state given by the parity fringe
contrast. For short wait times, we measure a parity fringe
contrast of 87% [Fig. 2(b)]. This contrast is mainly limited
by the MS gate fidelity of 94% as well as the four π pulses
required for LLI state preparation and interrogation. After
cooling the axial modes of the ion string, we achieve about
99% fidelity for each of the π pulses. After a wait time of
105 ms, the contrast of the parity flops decreases to 70%.
The reduction, in contrast, is mainly due to spontaneous
decay of either of the two ions with a total probability of
17% (excited state lifetime of τ ≈ 1.2 s [32]).
Phase drifts in the LLI-state preparation due to changes

in the laser intensity or other miscalibrations do not allow
for an absolute measurement of the phase. Instead, we
remove these phase drifts by interleaved calibrations of the
state preparation alternating between wait times of τ ¼
5 ms and τ ¼ 105 ms. The effective wait time of 100 ms
was chosen to be a multiple of the period of the power grid
of 60 Hz to average over a full period, thereby removing
systematic effects due to slow variations of the amplitude of
the magnetic field variations during a power grid cycle.
The magnetic field of 3.72 G is supplied by a single

permanent magnet, which results in a magnetic field
gradient of 0.8 mG. Due to the magnetic field gradient,
ion no. 0 would experience an excess Zeeman phase shift.
To remove its effect, we also alternate between states jψ0;1

R i
and jψ0;1

L i:
jψ0;1

R i ¼ 1=
ffiffiffi
2

p
ðjD0

5=2; D
1
−5=2i þ jD0

1=2; D
1
−1=2iÞ;

jψ0;1
L i ¼ 1=

ffiffiffi
2

p
ðjD0

−5=2; D
1
5=2i þ jD0

−1=2; D
1
1=2iÞ: ð6Þ

We measure the frequency f ¼ δϕ=t for each state and
average the measured frequencies to cancel out the mag-
netic field gradient accordingly.
In total, one experimental block consists of measuring

the time evolution for the states jψ0;1
R i and jψ0;1

L i for wait
times of τ ¼ f5 ms; 105 msg and analysis phases of φ ¼
fφ0; ðφ0 þ 90°Þg (in total, eight measurements). In addi-
tion, we monitor the parity fringe amplitude for τ ¼ 5 ms
by using analysis laser phases of φ ¼ 45° and φ ¼ −45°,
respectively. Each measurement block lasts for about 40 s.
After each measurement block, we extract the phase and
adjust the laser phase offset φ0 so as to keep measuring near
the zero crossing of the parity fringes. To maintain high
contrast, we insert calibration measurements of the carrier
transition frequencies and magnetic field every 10 min.
Following this procedure, we monitored the time evolution
of the LLI state continuously from February 19, 2018 at
06∶00 until February 23, 2018 at 03∶00 coordinated
universal time (UTC); see Fig. 3.
Additional contributions to the phase evolution arise

from the quadratic Zeeman shift [33] and the interaction
with the dc electric field gradient [16]. The quadratic
Zeeman shift was calculated to change the frequency by
4.5 mHz per 1 mG change in the magnetic field [33]. The
magnetic field was measured to change by less than 4 mG
during the experiment; see Fig. 3. Using the measured
magnetic fields, we applied a correction to the frequency to
compensate for the small magnetic field changes. In an
effort to reduce this energy shift, we carefully aligned the
quantization angle with the trap axis to 58° [16]. We
measured the phase ϕ as a function of the axial frequency
to accurately quantify the quadrupole shift. We found that
the quadrupole shift amounts to only 6.2 Hz at an axial c.m.
frequency of ωc:m: ¼ 830 kHz, yielding a frequency shift
of −1.5 mHz=kHz ωc:m:. The axial c.m. frequency was

FIG. 3. Magnetic field changes, δB, interference amplitude, and
frequency measurements. The gray points represent the single
measurement corrected for the quadratic Zeeman shift. We bin the
measurements to 60 min intervals (blue points) and fit to Eq. (7)
(red curve) to bound the LLI tensor elements.

(a) (b)

FIG. 2. (a) Relevant Caþ electronic energy levels, transitions,
and the experimental sequence for the preparation and inter-
rogation of the LLI target state. (b) Parity, measurements, and fit
as a function of the laser field phase φ for 5 ms (red) and 105 ms
(blue) wait times. By measuring the parity at phases φ0 and φ90,
we estimate the accumulated phase δϕ with respect to the 5 ms
wait time.
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measured to be stable to better than 200 Hz over 12 h, and
we can ignore the effect of these fluctuations on the LLI
signal.
We calculated the Allan deviation of the frequency

measurement as a function of the averaging time τ; see
Fig. 4. The Allan deviation is averaging as a function of
1=

ffiffiðp
τÞ, indicating that we are still limited by statistical

noise rather than by correlated noise or systematics as
discussed above. The Allan deviation is also a measure of
the uncertainty in the frequency estimate. We measure that,
for the entangled state, the uncertainty decreases at a rate of
1.72 Hz=

ffiffiffi
τ

p
, whereas for a separable state, it decreases as

3.54 Hz=
ffiffiffi
τ

p
. This is the expected improvement of a factor

of two due to using entanglement over the previous
sensitivity published in Ref. [18]. In addition, our total
measurement time was ∼4 times longer, leading to another
improvement in the frequency uncertainty by a factor of
two, resulting in a total frequency uncertainty of 3.4 mHz.
We calculate the bounds for the LLI tensor coefficients,

CMN , from the measured frequency as given by Fig. 3.
First, we use the Lorentz transformation to rotate LLI
tensor coefficients from the laboratory reference frame,
Cμ0ν0 , to the SCCEF reference frame, CMN . For two ions,
the energy difference due to a potential LLI violation is
given by [20]

f ¼ ΔEh ¼ −8.9ð2Þ × 1015 HzðCxx þ Cyy − 2CzzÞ ⇒
¼ A sinðω⊕TÞ þ B cosðω⊕TÞ þ C sinð2ω⊕TÞ
þD cosð2ω⊕TÞ: ð7Þ

where ω⊕ ¼ 2π=23.93 h is the sidereal angular frequency
of the Earth rotation, and T is the time measured since the

vernal equinox. The A, B, C, and D coefficients depend on
the CMN , the colatitude angle of the experiment of 52.1°,
and the angle of the magnetic field. We fit the hourly binned
data in Fig. 3 to Eq. (7) and calculate the tensor coefficients,
CMN . The results are summarized in Table I, where it is
shown that we have set a new upper bound for any possible
spatial violation of the local Lorentz invariance at about
5 × 10−19. This represents a two- to fourfold improvement
over the current bound.
One may wonder about the additional gain when

scaling to Greenberger–Horne–Zeilinger states with
more particles. For instance, states of the form
jðD5

2
D−5

2
D−5

2
D5

2
þD1

2
D−1

2
D−1

2
D1

2
Þi can be generated with

the exact same pulse sequence as used in this work and,
in addition to the global magnetic field fluctuations, decou-
ple the magnetic field gradient. This may become an
important consideration when applying our scheme to states
with ultralong lifetimes, such as to the F7=2 state forYbþ ions
[21]. In this case, using the four-ion entangled state above
improves the signal-to-noise ratio by a factor of 24=2 ¼ 8 as
compared to preparing it probabilistically via the separable
state. We test this approach and create a four-ion entangled
state. However, for 40Caþ, spontaneous emission limits the
coherence before the magnetic field gradient does. Because
spontaneous emission acts on each ion independently, the
coherence time of the four-ion state is halved as compared
to the two-ion state. Thus, one expects the same signal-to-
noise ratio as for two uncorrelated two-ion states, i.e., only
an improvement of 1=

ffiffiffi
2

p
as compared to our experiments

above.Wewere able to achieve an entangling gate fidelity of
∼80%, which resulted in a LLI-state preparation of ∼50%.
In addition, complications such as an increased time over-
head for cooling and increased sensitivity to infidelities of
the single-qubit rotations lead to an actual decrease of the
sensitivity. All of these complications are not of a funda-
mental nature, and our measurements show that using more
complicated entangled states is indeed a viable route.
Nevertheless, these measurements also illustrate that taking
advantage of entanglement requires a high degree of
experimental control.
In conclusion, we use tailored quantum correlations to

eliminate the first-order sensitivity to fluctuations in the

FIG. 4. Allan deviation of the frequency measurements, σ
calculated from the unbinned data for an entangled state (red),
and a mixed state prepared according to Ref. [18] (black). The
blue solid line is a fit showing that σ ¼ 1.72 Hz=

ffiffiffi
τ

p
and σ ¼

3.54 Hz=
ffiffiffi
τ

p
for the entangled and mixed states, respectively,

where τ is the averaging time. The dashed black line is the
calculated projection noise for the entangled state.

TABLE I. Limits on Lorentz violation parameters (in the
SCCEF) given by fitting our data to the model in Eq. (7). The
uncertainties are one standard deviation from the fit scaled by
the calculated

ffiffiffiffiffiffiffi
χ2red

p
¼ 1.17. Note that we use the notation

CX−Y ¼ CXX − CYY .

Parameter New limit Existing limit [18]

CX−Y ð6.2� 9.2Þ × 10−19 ð0.2� 2.3Þ × 10−18

CXY ð2.4� 4.8Þ × 10−19 ð−0.8� 1.2Þ × 10−18

CXZ ð0.8� 2.1Þ × 10−19 ð3.4� 7.9Þ × 10−19

CYZ ð−3.1� 2.2Þ × 10−19 ð1.7� 7.1Þ × 10−19
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global magnetic field—the dominant decoherence mecha-
nism in our experiment. Furthermore, we increase our
measurement signal as compared to similar experiments
(Refs. [17,18]) performed using mixed states. We show
that, through the use of high-fidelity entangling operations,
the signal can be improved by nearly a factor of two, which
is near the projection noise limit. We have applied this
method to improve the bounds on spatial violation of the
local Lorentz symmetry of the electron to about 5 × 10−19.
Our measurements demonstrate empirically that entangle-
ment can be used to improve precision measurements. In
particular, this is the case if quantum states can be
engineered that do not couple to the dominant noise sources
but are still sensitive to the signal. Although, in principle,
the gains are expected to be exponential in the number of
entangled parties as compared to using separable states, the
scaling of the required resources and alternative measure-
ment schemes needs to be assessed carefully.
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Grant No. FA9550-15-1-0249.

[1] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[2] D. F. Walls, Nature (London) 306, 141 (1983).
[3] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and

J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[4] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,

4033 (1986).
[5] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).
[7] D. J. Wineland, J. J. Bollinger, W.M. Itano, and D. J.

Heinzen, Phys. Rev. A 50, 67 (1994).
[8] B. L. Higgins, D.W. Berry, S. D. Bartlett, H. M. Wiseman,

and G. J. Pryde, Nature (London) 450, 393 (2007).
[9] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S.

Takeuchi, Science 316, 726 (2007).
[10] V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M.

Itano, C. Monroe, and D. J. Wineland, Phys. Rev. Lett. 86,
5870 (2001).

[11] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J.
Chiaverini, W.M. Itano, J. D. Jost, C. Langer, and D. J.
Wineland, Science 304, 1476 (2004).

[12] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M.
B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).

[13] M. Kacprowicz, R. Demkowicz-Dobrzański, W.
Wasilewski, K. Banaszek, and I. A. Walmsley, Nat. Pho-
tonics 4, 357 (2010).

[14] N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U.
Dorner, and I. A. Walmsley, Phys. Rev. Lett. 107, 113603
(2011).

[15] E. M. Kessler, P. Kómár, M. Bishof, L. Jiang, A. S.
Sørensen, J. Ye, and M. D. Lukin, Phys. Rev. Lett. 112,
190403 (2014).

[16] C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt,
Nature (London) 443, 316 (2006).

[17] M. Chwalla, K. Kim, T. Monz, P. Schindler, M. Riebe,
C. F. F. Roos, and R. Blatt, Appl. Phys. B 89, 483 (2007).

[18] T. Pruttivarasin, M. Ramm, S. G. Porsev, I. I. Tupitsyn,
M. Safronova, M. A. Hohensee, and H. Häffner, Nature
(London) 517, 592 (2015).

[19] V. A. Kostelecký and N. Russell, Rev. Mod. Phys. 83, 11
(2011).

[20] M. A. Hohensee, N. Leefer, D. Budker, C. Harabati, V. A.
Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 111, 050401
(2013).

[21] V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G.
Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Häffner,
Nat. Phys. 12, 465 (2016).

[22] C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M.
S. Safronova, S. G. Porsev, Nature (London) 567, 204
(2019).

[23] R. Shaniv, R. Ozeri, M. S. Safronova, S. G. Porsev, V. A.
Dzuba, V. V. Flambaum, and H. Häffner, Phys. Rev. Lett.
120, 103202 (2018).

[24] H. Häffner, C. F. Roos, and R. Blatt, Phys. Rep. 469, 155
(2008).

[25] K. Mølmer and A. S. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).

[26] T. R. Tan, J. P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D.
Leibfried, and D. J. Wineland, Nature (London) 528, 380
(2015).

[27] C. J. Ballance, V. M. Schäfer, J. P. Home, D. J. Szwer, S. C.
Webster, D. T. C. Allcock, N. M. Linke, T. P. Harty, D. P. L.
Aude Craik, D. N. Stacey, A. M. Steane, and D. M. Lucas,
Nature (London) 528, 384 (2015).

[28] C. F. Roos, New J. Phys. 10, 013002 (2008).
[29] N. Akerman, N. Navon, S. Kotler, Y. Glickman, and R.

Ozeri, New J. Phys. 17, 113060 (2015).
[30] H. Häffner, S. Gulde, M. Riebe, G. Lancaster, C. Becher, J.

Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Lett. 90,
143602 (2003).

[31] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V.
Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W.M. Itano,
D. J. Wineland, and C. Monroe, Nature (London) 404, 256
(2000).

[32] A. Kreuter, C. Becher, G. P. T. Lancaster, A. B. Mundt, C.
Russo, H. Häffner, C. Roos, W. Hänsel, F. Schmidt-Kaler,
R. Blatt, and M. S. Safronova, Phys. Rev. A 71, 032504
(2005).

[33] I. I. Sobelman, Atomic Spectra and Radiative Transitions
(Springer, Berlin, 1992).

PHYSICAL REVIEW LETTERS 122, 123605 (2019)

123605-5

https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1038/306141a0
https://doi.org/10.1103/PhysRevLett.55.2409
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevA.50.67
https://doi.org/10.1038/nature06257
https://doi.org/10.1126/science.1138007
https://doi.org/10.1103/PhysRevLett.86.5870
https://doi.org/10.1103/PhysRevLett.86.5870
https://doi.org/10.1126/science.1097576
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1038/nphoton.2010.39
https://doi.org/10.1038/nphoton.2010.39
https://doi.org/10.1103/PhysRevLett.107.113603
https://doi.org/10.1103/PhysRevLett.107.113603
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1038/nature05101
https://doi.org/10.1007/s00340-007-2867-4
https://doi.org/10.1038/nature14091
https://doi.org/10.1038/nature14091
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1103/PhysRevLett.111.050401
https://doi.org/10.1103/PhysRevLett.111.050401
https://doi.org/10.1038/nphys3610
https://doi.org/10.1038/s41586-019-0972-2
https://doi.org/10.1038/s41586-019-0972-2
https://doi.org/10.1103/PhysRevLett.120.103202
https://doi.org/10.1103/PhysRevLett.120.103202
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1038/nature16186
https://doi.org/10.1038/nature16186
https://doi.org/10.1038/nature16184
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/17/11/113060
https://doi.org/10.1103/PhysRevLett.90.143602
https://doi.org/10.1103/PhysRevLett.90.143602
https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1103/PhysRevA.71.032504
https://doi.org/10.1103/PhysRevA.71.032504

