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We consider two-dimensional spin-orbit-coupled atomic Bose-Einstein condensate in a radially periodic
potential. The system supports different types of stable self-sustained states including radially symmetric
vorticity-carrying modes with different topological charges in two spinor components that may have
multiring profiles and at the same time remain remarkably stable for repulsive interactions. Solitons of the
second type show persistent rotation with constant angular frequency. They can be stable for both repulsive
and attractive interatomic interactions. Because of the inequivalence between clockwise and counter-
clockwise rotation directions introduced by spin-orbit coupling, the properties of such solitons strongly
differ for positive and negative rotation frequencies. The collision of solitons located in the same or
different rings is accompanied by a change of the rotation frequency that depends on the phase difference
between colliding solitons.
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Nonlinear wave phenomena in atomic Bose-Einstein
condensates (BECs) attract considerable attention [1–3].
Depending on the sign of the interatomic interactions, one
can observe the formation in BECs of bright or dark
solitons. Their properties critically depend on the dimen-
sionality of the condensate, since multidimensional states
in BECs with attractive and repulsive interatomic inter-
actions may be prone, respectively, to collapse or various
snaking instabilities. Bright solitons can be obtained in a
Bose-Fermi mixture of degenerate gases, even if inter-
atomic interactions in the Bose component are repulsive
[4,5]. Another powerful approach to stabilization of multi-
dimensional states in BECs relies on the external potentials,
including periodic ones [6–8]. Besides conventional states
that do not change upon evolution [9], such potentials,
when they are radially symmetric [10–12], support stable
solitons exhibiting persistent rotation. The properties of
such solitons in single-component BECs do not depend on
the rotation direction.
This situation may change dramatically in spin-orbit-

coupled two-component condensates (SO BECs), which
are attracting steadily growing interest. SO BECs, repre-
senting a mixture of different states of the same atomic
species, were recently used for demonstration of coupling
between pseudospin degrees of freedom and spatial struc-
ture of the condensate [13–15]. SO BECs offer a versatile
platform for investigation of the nonlinear phenomena in
the presence of synthetic fields [16] and gauge potentials
[17]; see Ref. [18] for a review. SO coupling notably
modifies dispersion of the system [19,20], it may break

Galilean invariance [14,21], and it substantially impacts
properties of one- [22,23] and multidimensional [24,25]
solitons in the free space. Especially intriguing is the
impact of SO coupling on BEC in the external potentials,
where possible symmetries of self-sustained states and their
evolution dynamics are determined by the symmetry of the
potential. It was studied for solitons on a ring [26] and in
harmonic trap [27], in toroidal traps [28], Bessel [29], and
periodic [30] lattices.
While it was shown for radially symmetric potentials [28]

that SO coupling notably enriches two-dimensional soliton
families and leads to the appearance of azimuthal density
modulations, the most important and unexpected manifes-
tation of this effect, consisting in the breakup of equivalence
of two rotation directions (clockwise and counterclockwise)
for solitons, was not demonstrated in atomic BECs. This is
also the case for literature [31] on trapped SO BECs under
rotation that studies condensate transformation for one sign
of the rotation frequency. While this inequivalence has been
encountered in polariton condensates in a circular geometry
[32], polaritons represent an essentially nonequilibrium
system, where dominating interactions are repulsive, and
where effective SO coupling has a completely different
physical origin (it stems from TE-TM splitting) and is
relatively weak. Thus, the question arises of whether this
phenomenon exists in conservative atomic BECs where SO
coupling is considerable and where interactions can be both
repulsive and attractive.
Here we first introduce SO coupling into BECs in a

radially periodic potential and show that in the repulsive
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case it supports stable multiring vortex solitons carrying
different topological charges in two components. Such
structures have never been obtained in SO BECs before and
are in clear contrast to previously encountered azimuthally
modulated patterns. Second, we show that radially periodic
potentials support stable rotating multipole states for
repulsive nonlinearity and crescentlike fundamental states
for attractive nonlinearity, reminiscent of azimuthons [33],
that feature unexpected dependence not only on modulus,
but also on sign of the rotation frequency, clearly illustrat-
ing inequivalence of two azimuthal directions. Third, we
study interactions of rotating solitons for attractive non-
linearity and show that they lead to change in rotation
frequency that also depends on soliton phase difference.
Mean-field dynamics of two-dimensional BECs is

described by the normalized Gross-Pitaevskii equations
with Rashba SO coupling [34]:

i∂tψ� ¼ −ð1=2Þð∂2
x þ ∂2

yÞψ� þ VðrÞψ� � βð∂x ∓ i∂yÞψ∓
þ σðjψ�j2 þ jψ∓j2Þψ�: ð1Þ

Here ðψþ;ψ−ÞT is the spinor macroscopic wave function, t
and x, y are dimensionless time and spatial coordinates,
scaled to characteristic time ℏ=E0 and spatial scale R0,
respectively, E0 ¼ ℏ2=mR2

0 is characteristic energy,m is the
atomic mass, β characterizes the strength of SO coupling
that can be considerable, σ ¼ �1 corresponds to repulsive
or attractive interactions, VðrÞ ¼ 2V0 cos2ðrÞ is the radially
periodic potential with depth 2V0 measured in units of E0

(hereafter r and θ are the polar radius and angle); in what
follows, we set V0 ¼ 3. The radially periodic potential can
be created using a cylindrical laser beam whose amplitude
is modulated with a patterned mask (the conical diffraction
of the beam with the waist diameter ≃100 μm will be
negligible for the tightly confined disk-shaped condensate
with thickness ≃2 μm [12]). SO coupling is created by
laser beams which couple different states of 87Rb atoms (the
case of repulsive interactions) or 7Li atoms (attractive
interactions); its strength can be varied in a broad range
depending on laser configurations [20]; see also Refs. [13–
15,22] for detailed discussion on implementation of
SO BECs.
The simplest states are radially symmetric solitons

ψ� ¼ u�ðrÞe−iμtþim�θ, where m� are the topological
charges satisfying the condition m− ¼ mþ þ 1 that is
due to the linear spin-orbit coupling preserving the total
angular momentum, μ is the chemical potential, and u� are
real valued. We search for localized solutions carrying
finite norm N ¼ 2π

R
∞
0 rðu2þ þ u2−Þdr (which is propor-

tional to the total number of particles in the condensate).
At r → ∞ the effect of nonlinear terms becomes negli-
gible, and the intervals of chemical potential, where
localized states can exist, are determined by the eigen-
value problem μu� ¼ −ð1=2Þ∂2

ru� þ VðrÞu� � β∂ru∓.

This problem is π periodic and features the band gap
spectrum shown in Fig. 1(a). Localized nonlinear
modes—radial gap solitons—exist for μ values lying in
the spectral gaps [white regions in Fig. 1(a)]. However, in
contrast to usual gap solitons, nonlinear modes in the
radially periodic potential remain completely localized
also in the small-amplitude limit, when the corresponding
norm vanishes, N → 0. This feature is readily visible from
Fig. 1(b), where we plot several dependencies NðμÞ for
nonlinear modes with topological charges m� ¼ ð−1; 0Þ
(solid curves) and m� ¼ ð−2;−1Þ (dashed curves) and
density maxima located in radial minima of the potential
at r ¼ π=2, 3π=2, and 5π=2. In the limit N → 0, each of
these soliton families bifurcates from appropriate local-
ized linear mode with chemical potential μ from the gap.
Eigenvalues of linear modes in the semi-infinite and first
finite gaps from which the simplest solitons with density
maximum at r ¼ π=2 bifurcate are shown in Fig. 1(a) by
lines with circles. In spite of the repulsive interactions,
σ ¼ 1, families shown in Fig. 1(b) belong to the semi-
infinite gap (which is possible due to the radial periodicity
of the trap). When μ approaches the edge of the gap,
vortex modes acquire well-pronounced multiring structure
(see examples in Fig. 2). Standard linear stability analysis
[34,36] and direct integration of Eq. (1) indicate stability
of all vortex states shown in Figs. 1(b) and 2, in spite
of their complex multiring shapes. Stable radially sym-
metric vortex solitons can be found not only in the semi-
infinite gap but also in finite spectral gaps, as shown in
Figs. 3 and 5.
Now we turn to rotating states without radial symmetry.

They are sought as ψ�¼u�ðx0;y0Þe−iðμ�ω=2Þt in the rotating
frame x0 ¼xcosðωtÞþysinðωtÞ, y0 ¼ycosðωtÞ−xsinðωtÞ,
where complex functions u� solve (we further omit primes)

FIG. 1. (a) Bands (gray) and gaps (white) of radial potential and
eigenvalues of linear modes (lines with circles) with m� ¼
ð−1; 0Þ residing in the first potential minimum. (b) N versus μ
for simplest soliton families with m� ¼ ð−1; 0Þ (solid lines) and
m� ¼ ð−2;−1Þ (dashed lines) in the semi-infinite gap at σ ¼ 1.
For each m� set three families are shown with density maxima in
the first, second, and third minima of VðrÞ.
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μu� ¼ −ð1=2Þð∂2
x þ ∂2

yÞu� þ VðrÞu� � βð∂x ∓ i∂yÞu∓
þ σðju�j2 þ ju∓j2Þu� þ iωðx∂y − y∂xÞu�
∓ ðω=2Þu�: ð2Þ

Rotation with frequencyω results in the penultimate Coriolis
term in Eq. (2), while the last term originates from the
assumed form of time dependence in ψ� that is required to
eliminate time dependence in the SO-coupling term in the
rotating frame. Equation (2) admits a variety of rotating
solitons residing in different radial minima of the potential.
We start with repulsive nonlinearity (σ ¼ 1) and consider the
simplest solitons from the first minimum at r ¼ π=2 with
chemical potentials μ from the first finite gap. At β, ω ¼ 0,
they represent dipole (two out-of-phase spots in the uþ or u−
component) and quadrupole (four spots in uþ or u− with π
phase jumps) solitons. At β ¼ 0, increasing or decreasing
rotation frequency smoothly transforms multipole states into
radially symmetric vortices. The dependence of amplitude
a� ¼ max ju�ðx; yÞj of soliton components on ω is sym-
metric in this case; see line with open circles in Fig. 3(a) for
dipole solitons. Thus, at β ¼ 0 the properties of such solitons
do not depend on the rotation direction. This picture changes
qualitatively in the presence of SO coupling: the dependence
a�ðωÞ becomes asymmetric atβ ≠ 0. For dipole solitonswith
a dominatinguþ component, the entire domainof existence of
rotating solitons shifts toward positive frequency values [lines
with solid circles in Fig. 3(a) between two vertical dashed
lines marking the border of the existence domain]. For dipole
stateswith a dominatingu− component, the existence domain
shifts toward negative frequencies. The existence domains for
rotating solitons with different dominating components are

thusmirror symmetricwith respect toω ¼ 0, as illustrated for
quadrupole solitons in Figs. 3(b) and 3(c). Inequivalence of
azimuthal directions in SOBECs illustrated byFig. 3 is one of
the central results of this Letter. For a characteristic scale of
R0 ¼ 2 μm, dimensionless frequency ω ¼ 0.25 corresponds
to rotation periods of 137 ms in 87Rb and 11 ms in 7Li
condensate [34], that is well below the condensate lifetime
available in the state-of-the-art experiments.
Variation of rotation frequency causes notable shape

transformations. Examples of modulus jψ�j and phase
θ� distributions for different frequencies in dipole and
quadrupole solitons are shown in Figs. 4(a)–4(d). On the
right-hand edge of the existence domain in ω [Fig. 4(a)],
such dipoles turn into m� ¼ ð−1; 0Þ radially symmetric
vortices, while on the left-hand edge [Fig. 4(b)] they
become strongly modulated and dynamically unstable.
Quadrupole solitons transform into m� ¼ ð−2;−1Þ vorti-
ces on the right-hand edge [Fig. 4(c)] of the existence
domain and into m� ¼ ðþ2;þ3Þ vortices on its left-hand
edge [Fig. 4(d)]. Transformation of phase distribution upon
variation of ω resembles topological charge flipping [37].

FIG. 2. Modulus and phase (insets) distributions in m� ¼
ð−1; 0Þ radially symmetric solitons from different families, with
μ ¼ 1.05 (a) and μ ¼ 1.06 (b) at β ¼ 1, σ ¼ 1.

FIG. 3. Lines with solid circles show amplitudes a� of ψ�
components in rotating dipole (a) and quadrupole (b),(c) solitons
versus ω at μ ¼ 3, β ¼ 0.5, σ ¼ 1. Line with open circles in
(a) shows aþðωÞ dependence at β ¼ 0. Dominating component is
ψþ in (b) and ψ− in (c). Thin lines in (b) and (c) correspond to
radially symmetric states. (d) a�ðωÞ in rotating fundamental
solitons at μ ¼ 0.6, β ¼ 0.5, σ ¼ −1. Green circles indicate
unstable branches.
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Families of radially symmetric states into which rotating
solitons transform can be further continued in ω, as shown
by thin lines in Fig. 3. At fixed ω and σ ¼ 1, all rotating
solitons (lines with circles) bifurcate with increase of
chemical potential μ from radially symmetric solitons (thin
lines), which emanate from corresponding linear modes, as
shown in Fig. 5. The charge of the state, from which
bifurcation occurs, is determined by ω: it is ð−1; 0Þ in
Fig. 5(a) and ð−2;−1Þ in Fig. 5(b). When μ increases and
approaches the border of the first gap, rotating modes
develop multiring structure and eventually delocalize.
In contrast to polariton condensates, both dipole and

quadrupole rotating solitons in repulsive SO BECs are
dynamically stable in wide parameter regions even for β
values comparable to 1. Stability was also tested by

modeling the evolution of slightly perturbed states up to
huge times t ∼ 104 in Eq. (1). Instability domains are
indicated by green circles in Figs. 3 and 5, while black or
red circles correspond to stable branches. Rotating solitons
are always stable in the parameter domains adjacent to
bifurcation points from radially symmetric solitons.
Examples of evolutions with stable and unstable rotations
are given in Figs. 6(a)–6(c).
SO BECs with attractive nonlinearity ðσ ¼ −1Þ support

simpler fundamental rotating solitons with unusual
crescentlike shapes; see Fig. 4(e). Such solitons exist in

FIG. 4. Modulus and phase (insets) distributions in dipole solitons with (a) ω ¼ 0.13, (b) ω ¼ −0.04, and quadrupole solitons with
(c) ω ¼ −0.06, (d) ω ¼ −0.22 at μ ¼ 3, β ¼ 0.5, σ ¼ 1, and fundamental solitons with (e) ω ¼ 0.15 at μ ¼ 0.6, β ¼ 0.5, σ ¼ −1. In all
cases ψþ is a dominating component; jψþj and jψ−j distributions are plotted with the same scale in each soliton.

FIG. 5. Lines with circles show a�ðμÞ dependencies for
(a) rotating dipole soliton with ω ¼ 0.12 and (b) quadrupole
soliton with ω ¼ −0.06 at β ¼ 0.5, σ ¼ 1. Thin lines show a�ðμÞ
for radially symmetric m� ¼ ð−1; 0Þ (a) and m� ¼ ð−2;−1Þ
(b) states. Green circles indicate unstable branches.

FIG. 6. Stable (a),(c) and unstable (b) evolution of rotating
dipole and quadrupole solitons at (a) ω ¼ 0.13, (b) ω ¼ −0.04,
(c) ω ¼ −0.22 and μ ¼ 3, β ¼ 0.5, σ ¼ 1. Interaction of two
fundamental solitons in the same (d1)–(d3) and in different
(e1)–(e3) rings at μ ¼ 0.6, β ¼ 0.5, σ ¼ −1. Solitons are in phase
in (d1)–(d3) and (e2) and out of phase in (e3) and have opposite
rotation frequencies ω ¼ �1.
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a semi-infinite gap and resemble whispering-gallery modes
[38]. The dependencies of amplitudes a� of such solitons
are also strongly asymmetric in rotation frequency ω
[Fig. 3(d)]: at one border of the existence domain in ω
soliton gradually expands along the entire ring where it
resides (soliton is stable in broad domain adjacent to this
border), while on another border one observes development
of an unstable multiring structure. Since such solitons
are better localized than their counterparts in repulsive
condensate, one can study their collision in the same
[Figs. 6(d1)–6(d3)] or in different [Figs. 6(e1)–6(e3)] rings.
Taking two solitons with opposite rotation frequencies ω
and equal norms (μ values), one unexpectedly finds that
after collision [Fig. 6(d2)] both solitons accelerate [com-
pare input in Fig. 6(d1) with output in Fig. 6(d3) after
t ¼ 2π=ω]; i.e., collision in this system changes rotation
frequencies. Moreover, the variation in ω depends on the
phase difference between colliding solitons. Thus, when
two solitons with opposite frequencies at t ¼ 0 collide in
different rings [Figs. 6(e1)–6(e3)], the outer (inner) soliton
accelerates (decelerates) upon consecutive collisions for in-
phase solitons [Fig. 6(e2)], while for out-of-phase states
this tendency reverses [Fig. 6(e3)], leading to different final
density distributions.
In summary, we demonstrated that SO coupling in

trapped BECs with repulsive or attractive interaction breaks
the equivalence of two rotation directions. Rotating solitons
feature strongly asymmetric existence domains in rotation
frequency and feature nonconventional collisional behav-
iors involving their acceleration or deceleration determined
by the phase difference between solitons.
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