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We consider quarkyonic matter to naturally explain the observed properties of neutron stars. We argue
that such matter might exist at densities close to that of nuclear matter, and at the onset, the pressure and the
sound velocity in quarkyonic matter increase rapidly. In the limit of large number of quark colors Nc, this
transition is characterized by a discontinuous change in pressure as a function of baryon number density.
We make a simple model of quarkyonic matter and show that generically the sound velocity is a
nonmonotonic function of density—it reaches a maximum at relatively low density, decreases, and then

increases again to its asymptotic value of 1=
ffiffiffi
3

p
.
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Introduction.—Recent radio, x-ray, and gravitational
wave observations of neutron stars (NSs) have provided
valuable new insights about the equation of state (EOS) of
dense matter [1–3]. The discovery of two massive NSs with
masses ≃2 M⊙ [4,5] established that the pressure of matter
in the inner neutron star core, where the typical baryon
number density nB > 3n0 and n0 ¼ 0.16 fm−3, is large.
The detection of gravitational waves from GW170817—a
neutron star merger placed an upper limit on the NS tidal
deformability, and provided strong evidence that their
radius R < 13.5 km [3,6–9]. These smaller radii require
the pressure of matter in the outer core, where the
nB ¼ 1–3n0, to be relatively small. Taken together, the
large observed masses and modest radii imply that the speed
of sound c2s ¼ ∂P=∂ϵ, where P is the pressure and ϵ is the
energy density of matter, must increase rapidly in the core of
the NS. Detailed analysis suggests c2s ≥ 1=3 [10–18].
This observation that the speed of sound is of order 1 in

NSs has profound consequences. The sound velocity at
zero temperature can be written as

c2s ¼
nB

μBdnB=dμB
; ð1Þ

where μB is the relativistic baryonic chemical potential.
This implies that when c2s ≃ 1, an order 1 change of baryon
density results in an order 1 change in the chemical
potential. For weakly bound nuclear matter μB ∼MN this
means that the chemical potential of matter must quickly
increase by MN in the neutron star core where the density
changes by a factor of a few. In models that posit that
nucleons are the only relevant degrees of freedom, the large
change in μB is achieved due to large repulsive interactions.
In nonrelativistic theories cs increases rapidly for nB > n0
due to repulsive three-neutron interactions [19–21]. In
relativistic mean field models a rapid increase in the vector
potential arising due to exchange of ω and ρ mesons shifts

the energy of nucleons by V0 ≃MN [22]. Both realizations
are problematic.
We now understand, through insights provided by chiral

effective field theory [23,24], that nuclear Hamiltonians are
only useful for nB ≲ 2n0 because of the proliferation of
many-body operators with density [25,26]. In relativistic
mean field models, large vector fields at high density shift
the nucleon energy by order MN ; here we should expect
that quark degrees of freedom are important [22]. In high
density quark models, there is no analog of the composite
vector field to raise the zero point of the baryon energies.
Recent efforts based on the functional renormalization
group attempt to circumvent these problems to extend a
description based only on nucleons and mesons to larger
density [27]. Quarkyonic matter offers a radical alternative
where both quarks and nucleons appear as quasiparticles
[28,29] and provides an explicit realization of some of the
early ideas concerning quark matter [30–34].
The basic assumption of quarkyonic matter is that at

large Fermi energy, the degrees of freedom inside the Fermi
sea may be treated as quarks, and confining forces remain
important only near the Fermi surface where nucleons
emerge through correlations between quarks [28]. This is
somewhat analogous to the phenomena of Cooper pairing
in Fermi systems with attractive interactions, where two-
particle bound states smear the momentum distribution and
produce an energy gap in the excitation spectrum.
In quarkyonic matter, confinement at the Fermi surface

produces triplets with spin 1=2 that we identify with
baryons. While we cannot offer a first-principles, QCD-
based, description because we lack the nonperturbative
methods needed, we provide qualitative arguments to
suggest that baryons occupy a momentum shell of width
δkF ¼ Δ ≃ ΛQCD. Because of asymptotic freedom, confin-
ing interactions arise only when the momentum exchange
q≲ ΛQCD. Pauli blocking of intermediate states prevents
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such low-momentum exchange deep inside the quark Fermi
sea and Δ cannot be large compared to ΛQCD. We assume
that Δ varies with density to ensure that the density of
baryons in the shell saturates at nB ≃ Λ3

QCD, and we develop
a simple model for the EOS.
The key elements of the quarkyonic picture are illus-

trated in Fig. 1. Here fQ is momentum distribution function
or quarks and EQ is their energy. The momentum distri-
bution is smeared at the surface because these quarks are
confined inside baryons. Baryons occupy states near the
Fermi surface with momentum width Δ and produce a gap
in the quark excitation spectrum. The absence of low
energy quark excitations will have implications for the
transport properties that we discuss later.
At extremely high density, quarkyonic matter is inferred

from the properties of QCD when Nc is large. In this limit,
confining forces are important when the Debye screening
mass generated by quark loops is less than the confinement
scale ΛQCD. Since the color Debye mass mD ≃ gμQ, where
μQ is quark chemical potential and g is the gauge coupling,
by noting that g2Nc is held fixed when taking the large Nc
limit, we can conclude that quarks are confined into
baryons for μ ≲ ffiffiffiffiffiffi

Nc
p

ΛQCD. This observation that quark
matter remains confined up to a quark chemical potential
parametrically large (by the factor

ffiffiffiffiffiffi
Nc

p
) compared to the

confinement scale is the central tenet of the quarkyonic
picture [28].
To realize these ideas in a concrete example we will

consider symmetric matter characterized by a finite baryon
chemical potential μB and the isospin chemical potential
μI ¼ 0. Further, we assume that chiral symmetry remains
broken to set the quark mass MQ ¼ MN=Nc as in the
constituent quark model, and the quark chemical potential
μQ ¼ μB=Nc. In the absence of interactions, nucleons will
appear in the ground state when μB > MN and their number
density will increase with μB until the Fermi momentum
kFB ≳ ΛQCD. Because MN is large, at first, the nucleon

number density increases rapidly with μB. However, when
quarks appear, and occupy low-momentum states below the
shell, the growth of the baryon density with μB is reduced.
In this model the baryon number density

nB ¼ 2

3π2
½k3FB − ðkFB − ΔÞ3 þ k3FQ�; ð2Þ

where kFB is the Fermi momentum of nucleons, and the
Fermi momentum of quarks

kFQ ¼ ðkFB − ΔÞ
Nc

ΘðkFB − ΔÞ; ð3Þ

so that the contribution of quarks to the net baryon density
relative to nucleons is suppressed by 1=N3

c. The energy
density is given by

ϵðnBÞ ¼ 4

Z
kFB

NckFQ

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

N

q

þ 4Nc

Z
kFQ

0

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

Q

q
: ð4Þ

The chemical potential and pressure are obtained from
the familiar thermodynamic relations μB ¼ ∂ϵ=∂nB and
P ¼ −ϵþ μBnB, respectively.
From Eq. (2) we see that nB increases less rapidly in the

quarkyonic phase. The resulting suppression of the sus-
ceptibility χB ¼ dnB=dμB leads to a rapid increase in the
speed of sound and is shown as the solid blue curve in
Fig. 2. The dashed blue curve shows c2s in noninteracting
nuclear matter for density nB ≲ 3n0. The black curves

FIG. 1. The schematic shows the momentum distribution of
quarks and baryons. The diffuse distribution of quarks in the
right-hand upper graph indicates they are confined inside baryons
that occupy momentum states with width δkF ¼ Δ.
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FIG. 2. The speed of sound in quarkyonic matter (solid curves)
and in matter containing only nucleons (dashed curves) is shown.
The blue curves are obtained for isospin symmetric nuclear
matter containing equal numbers of neutron and protons, and the
black curves are for matter containing only neutrons. The speed
of sound at the saturation density n0 ¼ 0.16 fm−3, indicated by
the arrow, is small and grows rapidly with increasing density.
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correspond to asymmetric matter containing only neutrons
and will be discussed later.
In our model we assume the thickness of quark Fermi

surface where nucleons reside to be given by

Δ ¼ Λ3

k2FB
þ κ

Λ
N2

c
: ð5Þ

This choice is not entirely arbitrary. The first term ensures
that the nucleon density nN ∝ k2FBΔ ≈ Λ3 approximately
saturates when baryons dominate the energy density. We
can expect such behavior when many-body interactions
between nucleons are repulsive and lead to a rapid increase
in the energy per baryon with density. The second term
is needed to ensure that c2S < 1. We set Nc ¼ 3,
Λ ¼ 300 MeV, and κ ¼ 0.3 to obtain the results shown
in Fig. 2. Quarkyonic matter generically predicts a rapid
increase in the sound velocity for kFB ≳ Λ, but its evolution
with density depends sensitively on the details. For our
Ansätze the location of the maximum of cS is largely
determined by Λ and its magnitude depends on both Λ
and κ.
The transition from nuclear matter to the quarkyonic

phase is second order in our simple model. The speed of
sound is continuous, but its derivative is not. As quarks
appear, pressure remains a smooth, but a more rapidly
increasing function of the energy density. This is the
opposite of the behavior encountered in simple models of
the quark-hadron transition, where the transition from
nuclear matter to quark matter leads to a reduction in the
pressure. Such transitions are typically first order and soften
the EOS even in the presence of a mixed phase containing
spatially separated quark and hadronic phases[35].
Thus far we have neglected nuclear interactions. At low

density, attractive nuclear interactions bind nucleons in
nuclei, and uniform symmetric nuclear matter is stable at
higher density due to repulsive hard-core interactions. In
nuclear models the speed of sound increases largely due to
these hard-core interactions. In contrast, since the nucleon
density in the quarkyonic phase saturates at nB ∝ Λ3

QCD,
nuclear interactions do not change the qualitative behavior
seen in Fig. 2. However, nuclear interactions are quanti-
tatively important and will be relevant in the following
when we discuss the EOS of neutron matter in the context
of neutron stars.
To describe neutron star matter we need to impose local

charge neutrality and beta equilibrium. These constraints
restrict the proton fraction to be ≲10%. For this reason, we
will approximate matter to consist of only neutrons. At a
given baryon density nB, the neutron Fermi momenta
is denoted by kFB and the up and down quark Fermi
momenta are denoted by kFu and kFd, respectively. We set
kFd ¼ ðkFB − ΔÞ=3 for kFB > Δ and kFu ¼ kFd=21=3 to
ensure charge neutrality.

Calculations of the EOS of neutron matter and their use
in constructing neutron stars have established the impor-
tance of interactions between neutrons. When the neutron
density nn ≲ n0, interactions are predominantly attractive,
and act to reduce the pressure of the neutron mater. With
increasing density, repulsive two- and three-body inter-
actions between neutrons at short distances become impor-
tant and lead to a rapid increase in the pressure [19,20,36].
This transition plays an important role in determining
the radius of NSs with mass M ≃ 1.4 M⊙ [37]. To
incorporate interactions we adopt a simple fit to micro-
scopic calculations of neutron matter from Ref. [38], where
the energy density due to interactions for nn < 2n0 was
well approximated by

VnðnnÞ ¼ ãnn

�
nn
n0

�
þ b̃nn

�
nn
n0

�
2

: ð6Þ

Here the coefficients ã ¼ −28.6� 1.2 MeV and b̃ ¼ 9.9�
3.7 MeV are chosen to bracket the uncertainties due to
poorly constrained three-neutron forces [20,21]. Further,
making the assumption that the interaction energy of
neutrons in the shell is only a function of the number
density of neutrons in the shell,

nn ¼
k3FB − ðkFB − ΔÞ3

3π2
; ð7Þ

the energy density of quarkyonic matter is

ϵðnBÞ ¼ 2

Z
kFB

kFB−Δ

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

N

q
þ VnðnnÞ

þ 2
X
i¼u;d

Nc

Z
kFi

0

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

Q

q
; ð8Þ

and the total baryon density is

nB ¼ nn þ
ðk3Fd þ k3FuÞ

3π2
: ð9Þ

The chemical potential and pressure are μB ¼ ð∂ϵ=∂nBÞ
and P ¼ −ϵþ μBnB, respectively.
In Fig. 2, the solid black curve shows c2s in quarkyonic-

neutron matter. Here we include the interaction contribution
between neutrons in the shell. c2S in pure neutron matter is
also shown as the black dotted curve for nB ≲ 3n0. The
interaction energy is obtained by setting ã ¼ −28.8 MeV
and b̃ ¼ 10.0 MeV and corresponds to a symmetry energy
of 32 MeV and the pressure Pðn0Þ ¼ 2.4 MeV=fm3 and is
compatible with experimental constraints [39]. The kinetic
contribution of the quarks in the sea and nucleons in the
shell is included as discussed earlier. Δ is given by Eq. (5)
and we set Λ ¼ 380 MeV and κ ¼ 0.3. With this choice
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quarkyonic matter occurs at nB ¼ 0.24 fm−3 and the
maximum value of cs ≃ 0.94 is reached at nB ¼ 0.64 fm−3.
The EOS of quarkyonic-neutron matter is shown (solid

blue curve) in Fig. 3 for the model parameters mentioned
above. The EOS of neutron matter without quarks obtained
by setting kFQ ¼ 0 is also shown. The rapid increase in
pressure at the onset of the quarkyonic phase is remarkable
and its influence on the neutron star mass-radius curve is
shown in Fig. 4. For comparison the mass-radius curve for
pure neutron matter is also shown. Since quarkyonic matter

has larger pressure over a range of energy densities
encountered in the core, it is able to support a larger
maximum mass and predicts radii that are also a bit larger.
Uncertainty associated with neutron matter and the quar-
kyonic matter EOSs are presently too large to make
discernible predictions for neutron star masses and radii.
Our proposal offers an alternate scenario for the rapid
increase in the pressure, which does not rely on large
contributions from nuclear interactions. Further, since low
energy excitations near the Fermi surface are baryonic,
we can expect transport properties including neutrino
cooling of quarkyonic matter to be quite similar to those
encountered in nuclear matter. However, more work is
warranted to determine if there could be discernible
differences, and how one would accesses it observationally.
A model in which interactions between quarks generate

baryons at the Fermi surface would provide useful insights
about quarkyonic matter. In future work such models could
be obtained by generalizing Nambu–Jona-Lasinio models
used to study color superconductivity [42,43]. Here Cooper
pairs favored in weak coupling would be replaced by
baryons due to strong confining interactions between three
quarks at the Fermi surface [44]. Related ideas on the
interplay between quarks, diquarks, and baryons have been
suggested and explored in earlier work (see, e.g.,
Refs. [45,46]) but differ from our proposal.
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