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Prescaling is a far-from-equilibrium phenomenon which describes the rapid establishment of a universal
scaling form of distributions much before the universal values of their scaling exponents are realized. We
consider the example of the spatiotemporal evolution of the quark-gluon plasma explored in heavy-ion
collisions at sufficiently high energies. Solving QCD kinetic theory with elastic and inelastic processes, we
demonstrate that the gluon and quark distributions very quickly adapt a self-similar scaling form, which is
independent of initial condition details and system parameters. The dynamics in the prescaling regime is
then fully encoded in a few time-dependent scaling exponents, whose slow evolution gives rise to far-from-
equilibrium hydrodynamic behavior.
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Introduction.—Universal scaling phenomena play an
important role in our understanding of the thermalization
process in quantum many-body systems. Topical applica-
tions range from heavy-ion collisions [1–3] to quenches in
ultracold quantum gases [4–7]. Starting far from equilib-
rium, these systems exhibit transiently a nonthermal fixed-
point regime where the time evolution of characteristic
quantities becomes self-similar. Consequently, details
about initial conditions and underlying system parameters
become irrelevant in this regime, and the nonequilibrium
dynamics is encoded in universal scaling exponents and
functions [2,4,8–12].
In heavy-ion collisions at sufficiently high energies,where

the gauge coupling is small due to asymptotic freedom
[13,14], the time evolution of gluons (g) and quarks (q) is
described by distribution functions fg;qðp⊥; pz; τÞ. Since the
system is longitudinally expanding, the distributions depend
on transverse (p⊥) and longitudinal momenta (pz), and on
proper time (τ) [15,16]. In the scaling regime, the gluon
distribution obeys

fgðp⊥; pz; τÞ ¼scaling
ταfSðτβp⊥; τγpzÞ; ð1Þ

with dimensionless τ → τ=τref and p⊥;z → p⊥;z=Qs in
terms of some (arbitrary) time τref and characteristic
momentum scale Qs. The exponents α, β, and γ are
universal, and the nonthermal fixed-point distribution fS
is universal up to normalizations [2], which has been
established numerically using classical-statistical lattice

simulations [10]. The exponents are expected to be
αBMSS ¼ −2=3, βBMSS ¼ 0, and γBMSS ¼ 1=3 according
to the first stage of the “bottom up” thermalization scenario
[1] based on number-conserving and small-angle scatter-
ings, or αBD ¼ −3=4, βBD ¼ 0, and γBD ¼ 1=4 in a variant
of “bottom up” including the effects of plasma instabil-
ities [17].
In this Letter, we compute the evolution of the quark-

gluon plasma approaching the nonthermal fixed point using
leading-order QCD kinetic theory [18]. Since this state-of-
the-art description involves elastic and inelastic processes,
the conservation of particle number is not built in, and no
small-angle approximation is assumed [19,20].
We establish that the far-from-equilibrium dynamics

according to leading-order QCD kinetic theory exhibits
self-similar scaling. Comparing to the dynamics with
elastic scatterings only, the softer-momentum regions are
efficiently populated by collinear radiation processes,
which is seen to improve the universal scaling behavior
of the distributions.
Most remarkably, we find that much before the scaling

[Eq. (1)] with universal exponents is established, the
evolution is already governed by the fixed-point distribu-
tion fS as

fgðp⊥; pz; τÞ ¼prescaling
ταðτÞfSðτβðτÞp⊥; τγðτÞpzÞ; ð2Þ

with nonuniversal time-dependent exponents αðτÞ, βðτÞ,
and γðτÞ. This represents a dramatic reduction in complex-
ity already at this early stage: The entire evolution in this
prescaling regime is encoded in the time dependence of a
few slowly evolving exponents, and we point out the
relation to hydrodynamic behavior far from equilibrium.
The phenomenon of prescaling describes the rapid

establishment of universal nonequilibrium results for
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certain quantities (fS), though others still deviate from their
universal values (α, β, γ). This has to be distinguished from
standard corrections due to finite size or time scaling
behavior, from which asymptotic universal values are
inferred without taking the infinite volume or time limit.
Coined by Wetterich based on the notion of partial fixed
points [21,22], prescaling has recently been explored in the
context of scaling violations in the short-distance behavior
of correlation functions for Bose gases [23].
QCD kinetic theory.—We employ the leading-order

QCD kinetic theory of Ref. [18] to evolve the gluon and
quark distributions by

∂τfg;qðp;τÞ−
pz

τ
∂pz

fg;qðp;τÞ¼−C2↔2
g;q ½f�−C1↔2

g;q ½f�; ð3Þ

using the numerical setup developed in Refs. [19,20]. Here
C2↔2
g;q ½f� represents the collision integrals for leading-order

elastic scatterings in the coupling αs ≡ g2=ð4πÞ. This
involves scatterings gg ↔ gg, qq ↔ qq, gq ↔ gq as well
as particle conversion gg ↔ qq̄ processes. To this order we
also include number-changing processes C1↔2

g;q ½f� of
medium induced collinear gluon radiation g ↔ gg,
q ↔ qg and quark pair production g ↔ qq̄. The effective
1 ↔ 2 splitting rate is calculated by the resummation of
multiple interactions with the medium and includes the
Landau-Pomeranchuk-Migdal suppression of collinear
radiation [24–27]. The soft momentum exchange is regu-
lated by isotropic screening [19,20].
From free streaming to universal scaling.—

We consider the initial distributions f0g;qðpÞ ¼
Ag;q expf−ðp2⊥ þ ξ2p2

zÞ=Q2
sg, where Aq ¼ 0.5 for quarks

and Ag ¼ σ0=g2 for gluons. For energetic collisions, the
bosonic gluons are expected to be highly occupied fðQsÞ ∼
1=g2 with a characteristic momentum scale Qs, while
fermion occupancies are bounded by Fermi-Dirac statistics
[28,29]. Here σ0 is taken to be σ0 ¼ 0.1, 0.6 and g ¼ 10−3

in view of the range of validity of kinetic theory and in
order to make clean comparisons with previous lattice
simulations [30]. The initial anisotropy is controlled by ξ,
and we employ ξ ¼ 2. Starting at τ0Qs ¼ 70 and choosing
τrefQs ¼ 7000, we solve the coupled set of kinetic equa-
tions (3) for the gluon and quark distributions numeri-
cally [19,20].
In Fig. 1, we show the evolution of the pressure

anisotropy PL=PT (solid curve) as a function of dimension-
less time τ → τ=τref for σ0 ¼ 0.1. The longitudinal and
transverse pressures are defined from the energy-momen-
tum tensor

TμνðτÞ ¼
Z

d3p
ð2πÞ3

pμpν

p0
ðνgfgðp; τÞ þ 2Nfνqfqðp; τÞÞ

¼ diagðe; PT; PT; PLÞ; ð4Þ

where νg ¼ 2ðN2
c − 1Þ ¼ 16 and νq ¼ 2Nc ¼ 6 for Nc ¼ 3

colors and Nf ¼ 3 quark flavors. One observes how the
pressure anisotropy starts to deviate from collisionless
expansion (dashed line) relevant at earliest times and bends
over to a milder power-law dependence on time once
interactions start to compete with expansion, in agreement
with previous results using different approximations
[10,31,32]. For comparison, we also show the result by
taking only elastic collisions into account (dotted curve).
The difference from the evolution with a full collision
kernel is comparably small, indicating that the inelastic
processes contribute mainly at low momenta, which are
phase-space-suppressed for bulk quantities such as
pressure.
The emergence of scaling can be efficiently analyzed

from moments of the distribution functions for gluons

nm;nðτÞ≡ νg

Z
d3p
ð2πÞ3 p

m⊥jpzjnfgðp⊥; pz; τÞ; ð5Þ

and equivalently for quarks. Effectively, different moments
probe different momenta and are thus sensitive to scaling in
a particular momentum regime. If a distribution function
shows prescaling (2), the precise values of αðτÞ, βðτÞ, and
γðτÞ in general depend on the history of the evolution from
the reference time, which is normalized to 1, and the final
time τ. Therefore we redefine the exponents in Eq. (2) to
reflect the instantaneous scaling properties with

ταðτÞ → exp

�Z
τ

1

dτ0

τ0
αðτ0Þ

�
; ð6Þ

which for constant α reduces to the power law τα. Then the
rate of change of a particular moment nm;n is given by a
linear combination of scaling exponents

d lognm;nðτÞ
d log τ

¼ αðτÞ − ðmþ 2ÞβðτÞ − ðnþ 1ÞγðτÞ: ð7Þ

FIG. 1. Pressure anisotropy PL=PT for a longitudinally ex-
panding QCD plasma with overoccupied gluon initial state.
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By looking at different moments n, m ¼ 0; 1;…, one
obtains a set of algebraic equations from which αðτÞ,
βðτÞ, and γðτÞ can be determined. Since the choice of
moments is not unique, one can probe different momentum
regimes and test how well (pre)scaling is realized.
The time-dependent exponents obtained from various

combinations of moments nn;m with n, m < 4 for initial
conditions with σ0 ¼ 0.1 are shown in Fig. 2, exhibiting a
remarkable overlap of the results from different moment
ratios [33]. In this case, one expects free-streaming scaling
exponents α → 0, β → 0, γ → 1 at very early times.
Accordingly, both αðτÞ and γðτÞ approach the nonthermal
fixed-point limit from above for initial conditions with
σ0 ¼ 0.1 [34]. At later times τ > 1, we fit the power laws
with constant exponents and obtain α ≈ −0.73, β ≈ −0.01,
and γ ≈ 0.29. These values are close to both the analytic
values of the BMSS and BD estimates given above and
consistent with previous lattice results within errors [10].
One clearly observes the prescaling regime, for which
different moments can be described by the common set of
time-dependent scaling exponents even before the asymp-
totic scaling is reached. However, to emphasize that the
time dependence of the exponents is not universal, we show
in Fig. 3 the results for larger initial gluon density σ0 ¼ 0.6
such that free streaming is suppressed. In this case we see
that at very early times τ < 0.03, there is no unique notion
of scaling exponents. But very quickly the results from
different sets of moments collapse again to a single curve,
much before the exponents attain their universal constant
values.
Universal scaling form of the distributions.—With the

results for exponents, we can now extract the universal
scaling form fS. We first consider rescaling with the
constant values of exponents obtained from the late-time
fit. The left panel of Fig. 4 shows the rescaled gluon
distribution τ−αg2fg as a function of p⊥ at different times τ
for pz ¼ 0 (solid lines) for initial conditions with σ0 ¼ 0.1.
After an initial period, all rescaled curves at different times
collapse to a single scaling curve.

We see that with a full collision kernel, the low-
momentum part of the distribution function develops a
∼1=pT behavior. In contrast, only elastic processes are
not efficient in developing these thermallike features of a
low-momentum bath (grey dashed curves) [35]. The softer-
momentum region is efficiently populated by the collinear
radiation processes, and we observe excellent scaling
properties also in that regime where particle-number-
changing processes are essential.
Prescaling states that the very same distribution function

fS can be extracted at much earlier times, before the scaling
exponents take on their universal values. To verify this, we
rescale the distribution function according to Eq. (2) using
the time-dependent exponents from Fig. 2 and relation (6).
As shown in the right panel of Fig. 4, the rescaled distribution
collapses to a single scaling curve even at early times. As can
be seen from Fig. 1, the time-dependent exponents of Fig. 2
along with the universal scaling form fS can be established
already at a timewhere the bulk quantityPL=PT still appears
to be deep in the free-streaming regime.
A corresponding analysis can be done for the longi-

tudinal momentum dependence. Figure 5 displays the
rescaled distribution as a function of τγpz and of τγðτÞpz
at different times, and we neglect the nearly vanishing
transverse momentum exponent β. Again, a much earlier
collapse of the curves is observed if time-dependent
exponents are used.
Like for the case with small-angle scattering approxima-

tion [32], we find that the quarks exhibit similar scaling
behavior as for gluons at late times for the part of the
distribution function not bounded by the Pauli exclusion
principle. In Fig. 6, we show the fermion distribution along
the longitudinal momenta and p⊥=Qs ¼ 1. Although the
time-dependent exponents capture most of the longitudinal
squeeze of the distribution function, the scaling form of the
fermion distribution function is not established as well as for
gluons. Because gluons are highly occupied, the quark
contribution to the total particle number is small at these
times. Therefore, the background evolution of gluons does
not changenoticeably in thepresence of quarks in this regime.

FIG. 2. Time-dependent scaling exponents from multiple sets
of integral moments for gluon density parameter σ0 ¼ 0.1.

FIG. 3. The same as Fig. 2, but for σ0 ¼ 0.6.
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Far-from-equilibrium hydrodynamic behavior.—It is
remarkable to observe that the dynamics in the prescaling
regime can be explained by the distribution function
rescaling [Eq. (2)] with three slowly changing exponents
αðτÞ, βðτÞ, and γðτÞ. This is precisely the situation one
encounters in hydrodynamics, which is an effective
description in terms of a few slowly varying degrees of
freedom. To make this link more concrete, we consider the
energy-momentum tensor Tμν of Eq. (4) along with the
particle-number current Jμ and a rank-three tensor Iμνσ,

Jμ ¼ νg

Z
d3p
ð2πÞ3

pμ

p0
fp; ð8Þ

Iμνσ ¼ νg

Z
d3p
ð2πÞ3

pμpνpσ

p0
fp; ð9Þ

where we focus on the gluonic part, i.e., νq ¼ 0. Integrating
the kinetic equation (3) with the appropriate powers of pμ

yields the equations of motion for these quantities.

For the case of homogeneous boost-invariant expansion
of a conformal system, Eqs. (8) and (9) have only three
independent components, namely the particle-number den-
sity n≡ J0 and the tensors 2I0xxð¼ 2I0yyÞ and I0zz, which
together with T00 evolve according to

∂τnþ n
τ
¼ −CJ; ∂τT00 þ T00 þ Tzz

τ
¼ 0;

∂τI0xx þ
I0xx

τ
¼ −Cxx

I ; ∂τI0zz þ
3I0zz

τ
¼ −Czz

I ; ð10Þ

with the collision integrals CJ ¼ νg
R
d3p=ðð2πÞ3p0ÞC½f�

and Cνσ
I ¼ νg

R
d3p=ðð2πÞ3p0ÞpνpσC½f�. Noting that

n ¼ n0;0, 2I0xx ¼ n2;0, and I0zz ¼ n0;2, we see that the
equations of motion for these moments can be mapped to
the same number of slowly varying scaling exponents using
Eq. (7). For a given distribution function fS, which is an
input from the far-from-equilibrium QCD computation near

FIG. 4. Left: Gluon distribution rescaled with τ−α versus transverse momentum for the full QCD collision kernels (solid) and with
elastic scatterings only (dashed). Right: The same distribution, but rescaled with a time-dependent scaling exponent.

FIG. 5. Left: Gluon distribution versus longitudinal momentum
τγpz. Right: Same, but with time-dependent exponents.

FIG. 6. Left: Fermion distribution versus longitudinal momen-
tum τγpz. Right: Same, but rescaled using the time-dependent
gluon scaling exponents employed also in Fig. 2.
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the nonthermal attractor, the scaling dependence of the
collision kernels CJ, Cxx

I , and Czz
I then closes the system of

hydrodynamic equation of motions.
What is special in comparison to more conventional

hydrodynamics descriptions, which describe the evolution
with respect to thermal equilibrium, is that our far-from-
equilibrium hydrodynamics describes the evolution with
respect to a nonthermal fixed-point distribution fS. In spirit
this is similar to anisotropic hydrodynamic formulations,
which are based on an expansion around a deformed
equilibrium distribution [36–38]. However, our results
establish the existence of a new hydrodynamic regime
far away from equilibrium at early times, which has not
much to say about the later-time approach to thermal
equilibrium, where more conventional hydrodynamic
descriptions should be applied. The subsequent evolution
of the quark-gluon plasma towards thermal equilibrium
with QCD kinetic theory is the subject of a separate
work [19,20].
Conclusion.—Our study presents the full solution of the

leading-order QCD kinetic equations with quarks and
gluons in the nonequilibrium regime. The results demon-
strate the emergence of early hydrodynamic behavior
around a far-from-equilibrium state, which is qualitatively
different from the more conventional hydrodynamics
around equilibrium. The effective description at early times
is based on three slowly varying degrees of freedom—the
time-dependent scaling exponents. The exponents relax to
the constant values characterizing the nonthermal fixed
point, whose existence we confirm in the presence of both
elastic and particle-number-changing processes. However,
it is a particular strength of our findings that they apply to
systems which are still away from the asymptotic scaling
regime of a nonthermal fixed point. Therefore, even in
cases where scaling is never reached, the evolution may be
described by prescaling dynamics.
More generally, our work provides new insights into

the important question of memory loss at early stages
in complex systems far from equilibrium and the estab-
lishment of effective theories like hydrodynamics from
the underlying microscopic physics. Though we have
focused on prescaling in the quark-gluon plasma, the
generalized prescaling relation (2) should be relevant to
other far-from-equilibrium many-body systems. For in-
stance, earlier theoretical [4,5,12] and very recently also
experimental [6,7] studies on quenches in nonequilibrium
Bose gases may be interpreted along these lines, and it
would be very interesting to revisit the results in view of
our findings.
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