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We explore the space of renormalization group flows that originate from supersymmetric N ¼ 1 SUð2Þ
gauge theory with one adjoint and a pair of fundamental chiral multiplets. By considering all possible
relevant deformations—including coupling to gauge-singlet chiral multiplets—we find 34 fixed points in
this simple setup. We observe that theories in this class exhibit many novel phenomena: emergent
symmetry, decoupling of operators, and narrow distribution of central charges a=c. This set of theories
includes two of the N ¼ 2 minimal Argyres-Douglas theories and their mass deformed versions. In
addition, we find 36 candidate fixed point theories possessing unphysical fermionic operators—including
one with central charges ða; cÞ ≃ ð0.20; 0.22Þ that are smaller than any known superconformal theory—that
need further investigation.
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Introduction.—Conformal field theory (CFT) is an impor-
tant object in theoretical physics which displays the physics
of the low energy fixed points of some gauge theories and of
critical phenomena in condensed matter theories. One
interesting question of CFT is to find the “minimal”
interacting theory. In four dimensions, ameasure ofminimal-
ity is the a central charge, the coefficient to the Euler density
of the trace anomaly, due to the a theorem [1,2], aUV > aIR
for all unitary renormalization group (RG) flows. A related
quantity is the c central charge, the coefficient to the two-
point function of the stress-energy tensor.
However, it is difficult to analyze strongly coupled

CFTs, even a and c, in general. The conformal bootstrap
program [3] partially solves this by giving a bound on c but
does not tell what the actual minimal theory is. The
situation changes drastically in theories with supersym-
metry. The superconformal symmetry allows us to relate
the central charges to ’t Hooft anomalies of the R symmetry
[4], which are determined by the a maximization [5] or
higher supersymmetry itself.
The central charge c of any unitary interacting N ¼2

superconformal field theory (SCFT) satisfies c≥11
30
[6]. The

theory that saturates the bound is theArgyres-Douglas theory
[7,8], denoted asH0 or ðA1; A2Þ in the literature.H0 also has
the smallest knownvalue ofa for an interactingN ¼2 theory.

In N ¼ 1 theories, no analytic bound on the central
charges is known so far. However, the numerical bootstrap
suggests that the SCFTwith the minimal central charge has a
chiral operatorOwith chiral ring relationO2 ¼ 0 [9–11], and
a bound c ≥ 1=9 ≃ 0.11 [11]. Is there a theory which
saturates this bound? The minimal theory thus far known
in the literature hasa ¼ 263

768
≃ 0.34 andc ¼ 271

768
≃ 0.35,which

was constructed via a deformation of the H0 theory [12,13],
and thus denoted as H�

0 [14]. This value of c is large
compared to the bound.
In the present work, we initiate a classification of N ¼ 1

SCFT in four dimensions obtained from Lagrangian theories
to find a minimal SCFT. We explore the space of RG flows
and fixed points that originate from the simple starting point
of supersymmetric SUð2Þ gauge theory with one adjoint and
a pair of fundamental chiral multiplets. From this minimal
matter content, we consider all of the possible relevant
deformations, including deformations by coupling gauge-
singlet chiral multiplets. Among the fixed points that we
obtain, two have enhanced N ¼ 2 supersymmetry: the
Argyres-Douglas theories H0 and H1, as already found in
Refs. [15–17]. The other 32 are N ¼ 1 supersymmetric,
including theH�

0 theory as aminimal theory in terms ofa.We
verify that these are “good” theories in the sense that there is
no unitary-violating operator by utilizing the superconformal
indices [18,19]. It is remarkable that ða; cÞ of these SCFTs
distribute within a narrow range as in Fig. 1, although the
allowed bound of a=c is wide [20].
In addition, we find 36 candidate fixed points which have

an accidental global symmetry in the infrared and some
unphysical operators; thuswe refer to them as “bad” theories.
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Remarkably, these include theories with even smaller central
charges than those ofH�

0. Theminimal one, whichwe denote
as T M, has a ≃ 0.20 and c ≃ 0.22. Although we are not able
to conclude that these “bad” theories are really physical by
the present techniques, we scope their properties.
A landscape of simple SCFTs.—We systematically

enumerate a large set of superconformal fixed points via
the following procedure:
(1) Start with some fixed point theory T .
(2) Find the set of all of the relevant chiral operators of

T , which we will call RT . Let us also denote ST ⊂ RT as
the set of operators with R charge less than 4=3.
(3) Consider the fixed points fT Og obtained by the

deformation δW ¼ O for all O ∈ RT .
(4) Consider the fixed points fT Ōg given by adding an

additional gauge-singlet N ¼ 1 chiral field M and the
superpotential coupling δW ¼ MO for all O ∈ ST .
(5) For each of the new fixed point theories obtained in

previous steps, check to seewhether it has an operatorOd that
decouples. Remove it by introducing anN ¼ 1 chiral fieldX
and a superpotential coupling δW ¼ XOd. We will use this
notation to clearly distinguish X from M in the following.
(6) For each new fixed point, repeat the entire procedure.

Terminate if there is no new fixed point.
We employ the a-maximization procedure [5] and its

modification [21] to compute the superconformal R charges
at each step. Beyond a maximization, we check to see
whether the theory passes basic tests as a viable unitary
SCFT: one is the Hofman-Maldacena bounds for N ¼ 1

SCFTs, 1
2
≤ ða=cÞ ≤ 3

2
[20]; the other one is the super-

conformal index. Some of the candidate fixed points have
trivial index or violate the unitarity constraints [22,23].
We perform this procedure for SUð2Þ gauge theory with

the adjoint chiral multiplet ϕ and two fundamental chiral
multiplets, q and q̃ (Nf ¼ 1). When there is no super-

potential, this theory flows to an interacting SCFT T̂ , as
discussed in Ref. [24] (also see Ref. [25]), and a free chiral
multiplet Trϕ2. To pick up only the interacting piece, we
add the additional singlet X and the superpotential
WT̂ ¼ XTrϕ2.
Starting from T̂ , we apply the deformation procedure

and find 34 nontrivial distinct fixed points. These theories
pass every test we have checked, so we call them “good”
theories. One caveat is that some of these “good” theories
have a flavor symmetry that is not classically manifest. This
can be explicitly seen from the superconformal index, as we
will discuss shortly. In these cases, we cannot rule out the
possibility that this symmetry mixes with the superconfor-
mal R symmetry causing unitarity violation. Nevertheless
we keep referring to these theories as good, assuming that
there is no such mixing. We list the theories with this
feature in the Supplemental Material [26].
There are an additional 36 distinct theories that pass

almost all of our checks, except that there is a term in the
index that signals a violation of unitarity. The existence of

such a term implies that either the theory does not flow to a
SCFT in the IR or the answers we obtained were incorrect
because we failed to take into account an accidental
symmetry. In fact, these “bad” theories also have an
accidental Uð1Þ symmetry which is not visible at the level
of the superpotential but is evident by the existence of the
corresponding conserved current term present in the index.
At present we do not know how to account for this
accidental symmetry, so we cannot say for certain whether
or not these flows will lead to SCFTs.
Interestingly, six of these “bad” theories appear to have

central charges lower than that of H�
0. Denote the lowest

one T M. This is a hint that there might be a minimal SCFT
in this landscape.
We have plotted a, c for the “good” theories without this

interesting complication in Fig. 1.We see that the distribution
ofa vsc is concentratednear the line ofa=c ∼ 0.87.All of the
theories satisfy the Hofman-Maldacena bound, and more
curiously the stronger bound conjectured in Ref. [27],
3
5
≤ ða=cÞ. Of the “good” theories,H�

0 has the smallest value
of a. T 0 has the smallest value of a among any theory with a
Uð1Þ flavor symmetry.H�

1 has the smallest value of a among
any theory with an SUð2Þ flavor symmetry [28]. Below we
examine each of these minimal theories in turn, as well as the
lowest central charge theory T M, and the second-to-lowest a
central charge “good” theorywith no flavor symmetry,which
we denote T μ. We summarize the structure of RG flows
among these special theories in Fig. 2. The full list of our
theories appears in the Supplemental Material [26].
The superconformal indices of these theories can be

computed using the Lagrangian description. We define the
index as

Iðt; y; xÞ ¼ Trð−1ÞFt3ðrþ2j1Þy2j2xf; ð1Þ
where ðj1; j2Þ are the spins of the Lorentz group and r the
Uð1Þ R charge. When the theory has a global symmetry
with Cartan generator f, we also include the fugacity x for
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FIG. 1. The central charges of the 34 “good” theories. The
ratios a=c all lie within the range (0.8246,0.9895). The mean
value of a=c is 0.8732, with standard deviation 0.0403.
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it. For each of these special theories, we give the first few
terms in the reduced superconformal index

I rðt; yÞ ¼ ð1 − t3=yÞð1 − t3yÞ½Iðt; yÞ − 1�; ð2Þ

which removes the conformal descendant contributions
coming from spacetime derivatives. If the reduced index
contains a term tRχ2jþ1ðyÞ with R < 2þ 2j or a term
ð−1Þ2jþ1tRχ2jþ1ðyÞ with 2þ 2j ≤ R < 6þ 2j, it violates
the unitarity constraint [22,23].
The coefficient of t6y0 allows us to read off the number

of marginal operators minus the number of conserved

currents [22]. The superpotential F terms ∂W=∂φ ¼ 0
for the fields φ allow us to read off the classical chiral ring,
and quantum modifications can be argued from the index.
We will see that the chiral rings we study in this Letter are
subject to quantum corrections. The superconformal index
turns out to be a useful tool to study the fully quantum
corrected chiral rings of our models.
T 0: Minimal c, minimal a withUð1Þ.—Let us begin with

the T 0 SCFT which is obtained via a deformation of T̂ ,

WT 0
¼ XTrϕ2 þ Trϕqq; ð3Þ

and has irrational central charges

aT 0
¼ 81108þ 1465

ffiffiffiffiffiffiffiffiffiffi

1465
p

397488
≃ 0.3451;

cT 0
¼ 29088þ 1051

ffiffiffiffiffiffiffiffiffiffi

1465
p

198744
≃ 0.3488: ð4Þ

The IR R charges of the fields of the T 0 and all other
theories discussed below are given in Table I. This theory
has the second smallest value of a, and the smallest value of
c among the 34 good fixed points that we find [29].
The chiral ring of the theory can be easily studied: the F

term conditions from Eq. (3) are simply Trϕ2 ¼ 0, qϕ ¼ 0,
and Xϕþ q2 ¼ 0. The first equation truncates the chiral
ring by setting ϕ2 ¼ 0. The second and third equations lead
to the classical generators of the chiral ring: O0 ≡ Trqq̃,
Trϕq̃ q̃, and X, with relation O02 ∼ XTrϕq̃ q̃.
This theory has an anomaly-free Uð1Þ flavor symmetry

that mixes with R. The reduced index is given as

Irðt; y; xÞ ¼ t3.28x12 − t3.45x−2χ2ðyÞ þ t4.19x8 − t6

þ t6.56x24 þ t7.46x20 þ t8.27x−10 þ � � � ; ð5Þ

where we assigned the flavor charges for the fugacity x as
fq ¼ 1, fq̃ ¼ 7, fϕ ¼ −2, fX ¼ 4. Here and below χsðaÞ
denotes the character for the SUð2Þ flavor symmetry of
dimension s ¼ 2jþ 1. This index allows us to read off the
quantum modified chiral ring: the terms t3.28x12 and t4.19x8

in the index come from the chiral operators Trϕq̃ q̃ and
Trqq̃, respectively; the second term denotes the fermionic

FIG. 2. A subset of the fixed points that can be obtained from
SUð2ÞNf ¼ 1 adjoint SQCD with singlets. The arrows are
labeled with the superpotential deformations. Note that the graph
is not arranged vertically by decreasing the a central charge
because the deformations we consider involve coupling in the
singlet fields.

TABLE I. The R charges of the chiral multiplets at various fixed points. The T μ theory has three chiral multiplets labeledM, which we
denote as M1;2;3.

Fields T 0 H�
0 H�

1 T μ T M

q ð543 − ffiffiffiffiffiffiffiffiffiffi

1465
p

=546Þ ≃ 0.924 11=12 1=2 1=4 7=8
q̃ ð75 − ffiffiffiffiffiffiffiffiffiffi

1465
p

=78Þ ≃ 0.471 5=12 1=2 3=4 1=8
ϕ ð3þ ffiffiffiffiffiffiffiffiffiffi

1465
p

=273Þ ≃ 0.151 1=6 1=4 1=4 1=4
M � � � 1 1 ð3=4; 1; 5=4Þ 1
X ½2ð270 − ffiffiffiffiffiffiffiffiffiffi

1465
p Þ=273� ≃ 1.70 5=3 3=2 3=2 3=2

X̂ � � � � � � � � � � � � 3=2
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operator Oα ¼ TrϕWα. We see that the operator X (which
would contribute t5.10x4 to the index if it exists) is absent
from the chiral ring [30]. We can read off the chiral ring
relation O02 ¼ OαðTrϕq̃ q̃Þ ¼ 0 from the absence of the
terms t8.38x16 and −t6.73χ2ðyÞx10.
H�

0: Minimal a.—The H0 fixed point can be obtained
from T 0 by adding the MTrϕq̃ q̃ term. This superpotential
is indeed a simplified version of the one considered in
Ref. [15]. At the H0 fixed point, we further deform by a
mass term M2,

WH�
0
¼ XTrϕ2 þ TrϕqqþMTrϕq̃ q̃þM2: ð6Þ

This flows to the H�
0 theory with the central charges

aH�
0
¼ 263

768
≃ 0.3424; cH�

0
¼ 271

768
≃ 0.3529: ð7Þ

TheH�
0 SCFTwas studied in Refs. [12,13] as a deformation

of the H0 Argyres-Douglas theory. Utilizing the UV
Lagrangian description presented here, we are able to
confirm various predictions about H�

0.
Classically, the F terms of Eq. (6) imply that M, X, and

O0 ≡ Trqq̃ generate the chiral ring, with relations M2 ∼ 0

and O02 ∼ 0. The superconformal index for the H�
0 theory

can be computed to give a reduced index

I rðt; yÞ ¼ t3 − t7=2χ2ðyÞ þ t4 þ t7 þ t17=2 þ � � � : ð8Þ

From this, we see that the two generators M and O
contribute the t3 and t4, respectively, while X is not a
generator. We also find that the operator Oα ¼ TrðϕWαÞ
contributes to t7=2χ2ðyÞ. From the coefficients of t6, t7, t8,
we find that M2 ¼ MO0 ¼ O02 ¼ 0 in the chiral ring. The
term t7 comes from ðOαÞ2. There is a relation for Oα of the
form MOα ¼ O0Oα ¼ 0 which can be read from the
absence of the terms −t13=2χ2ðyÞ and −t15=2χ2ðyÞ. These
relations support the analysis of Refs. [12,13].
H�

1: Minimal a with SUð2Þ.—The flow toH1 in our setup
is a simplified version of the flow considered in Ref. [16],
and it was also considered in Ref. [31]. From H1, the H�

1

SCFT is then obtained via a mass deformation to the
singlet,

WH�
1
¼ XTrϕ2 þMTrqq̃þM2: ð9Þ

The central charges are

aH�
1
¼ 927

2048
≃ 0.4526; cH�

1
¼ 1023

2048
≃ 0.4995: ð10Þ

Classically, the F terms imply that the chiral ring is
generated by M, X, O2 ≡ Trϕqq, O0 ≡ Trϕqq̃, O−2≡
Trϕq̃ q̃, with relations M2 ¼ MOi ¼ XOi ¼ 0, and

O2
0 ∼O2O−2. The last relation descends from that of the

Higgs branch of the H1 theory.
The reduced index is

Irðt;y;aÞ¼ t3þ t15=4½χ3ðaÞ−χ2ðyÞ�þ t9=2

− t6χ3ðaÞþ t15=2½1þχ5ðaÞ�þ t33=4þ��� : ð11Þ

We see that the theory has the SUð2Þ current from the
−t6χ3ðaÞ term, which is visible at the level of the super-
potential. There are generators M, X, and Oi satisfying
the relations M2 ¼ X2 ¼ 0 and O2

0 ∼O2O−2. There are
also fermionic operators Oα ¼ TrðϕWαÞ with relations
MOα ¼ XOα ¼ 0.
T μ: Next to minimal.—The T μ SCFT is obtained by the

superpotential

W ¼ XTrϕ2 þM2Trqq̃þM2
2

þM1Trϕqq̃þM3TrϕqqþM1M3; ð12Þ
and the central charges are given by

aT μ
¼ 711

2048
≃ 0.3472; cT μ

¼ 807

2048
≃ 0.3940: ð13Þ

The value of a is the third smallest value among the “good”
theories that we find, and the second among the ones
without flavor symmetry. The reduced index is

Irðt; yÞ ¼ t9=4 þ t3 þ t15=4½1 − χ2ðyÞ� þ t9=2 þ t21=4

þ t15=2 þ t33=4χ2ðyÞ − t9χ3ðyÞ þ � � � : ð14Þ
We see the chiral ring relations ðM1Þ3¼ðM2Þ2¼ðM3Þ2¼0.
There is also an operator Oα ¼ TrðϕWαÞ with a relation
M2;3Oα ¼ 0. There is no flavor symmetry, as we do not have
the −t6 term or a marginal operator.
T M: A new minimal theory?.—Let us discuss one

example among the 30 bad candidate fixed points.
Consider the superpotential

W ¼ XTrϕ2 þMTrqq̃þM2 þ Trϕqqþ X̂Trϕq̃ q̃ : ð15Þ
There is no anomaly-free flavor symmetry in the
Lagrangian. Assuming that the R charges are fixed by
W and the anomaly condition, we get the central charges as

aT M
¼ 417

2048
≃ 0.2036; cT M

¼ 449

2048
≃ 0.2192; ð16Þ

and also the superconformal index of this theory as

Irðt; y; aÞ ¼ t3 − t15=4χ2ðyÞ þ t9=2 þ t21=4χ2ðyÞ
− t6 þ t15=2 − t33=4χ2ðyÞ þ � � � : ð17Þ

The term −t6 implies that there is a conserved current at
the fixed point if it exists. The term t21=4χ2ðyÞ violates the
unitarity bound. As far as we know, this phenomenon has
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not been discussed in the literature. One possibility is that
this term comes from the short multiplet C̄−ð1=4Þð0;1=2Þ (in the
notation of Refs. [22,32,33]) that becomes free and gets
decoupled along the RG flow. Subtracting the contribution
to the central charges by treating the bottom component as a
free fermion with R ¼ −1=4, we get the central charges
ða; cÞ ¼ ð 189

1024
; 189
1024

Þ ≃ ð0.1846; 0.1846Þ. We do not know if
this prescription yields the correct central charges or index
of the IR theory.
Even though we do not have a valid index, if we take it

literally, we can read off the chiral ring relations M2 ¼ 0,
MX̃ ¼ 0, where X̃ is some combination of X and X̂. The
other component is gone from the chiral ring.
Discussion.—One goal of this program is to search for

and study minimal N ¼ 1 SCFTs. One feature of the low-
central charge SCFTs that we have examined here is that
there is a chiral operator satisfying a relation of the form
On ∼ 0 for n ¼ 2, 3. Another feature is that the central
charges of the SCFTs considered here lie in a narrow range
of a=c. It would be interesting to pursue the reasons for
this, and search for other N ¼ 1 SCFTs with truncated
chiral rings.
A common property of the RG flows in this landscape is

that some operators that are irrelevant at high energy can be
relevant in the IR—such operators are called dangerously
irrelevant. As such, this is an interesting arena for studying
RG flows along the lines of Ref. [34].
At present, the status of the 36 “bad” theories is unclear

because it is not clear how to account for the accidental
symmetry in the a-maximization procedure and thus check
if the corrected theory would flow to an interacting SCFT.
One way forward would be to identify the fermionic
multiplet that contributes to the unitary-violating terms
in the index and decouple it, as we naively did for the T M
theory. It would be interesting to resolve this question and
understand how the accidental symmetry arises. This would
settle whether one of these theories is indeed a new
candidate minimal N ¼ 1 theory or strengthen the case
for minimality of the H�

0 theory.
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