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The experimental detection ofmultipartite entanglement usually requires a number of appropriately chosen
local quantum measurements that are aligned with respect to a previously shared common reference frame.
The latter, however, can be a challenging prerequisite, e.g., for satellite-based photonic quantum
communication, making the development of alternative detection strategies desirable. One possibility for
avoiding the distribution of classical reference frames is to perform a number of local measurements with
settings distributed uniformly at random. In this Letter, we follow such a treatment and show that an improved
detection and characterization of multipartite entanglement is possible by combining statistical moments of
different order. To do so, we make use of designs that are pseudorandom processes allowing us to link the
present entanglement criteria to ordinary reference frame independent ones. The strengths of our methods are
illustrated in various cases, starting with two qubits and followed by more involved multipartite scenarios.
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Introduction.—The key role of multipartite entanglement
as a resource in quantum information theory manifests
itself through a variety of applications that gave rise to a
growing commercial interest in quantum technologies
[1–3]. Prominent examples are quantum computation or
communication protocols, which have been shown to out-
perform known classical counterparts [3–5]. Nevertheless,
its experimental detection and characterization still comes
along with major technical and conceptual difficulties. One
such difficulty is the alignment of local measurement
settings among the involved spatially separated parties,
which is a prerequisite for the evaluation of many entan-
glement criteria or Bell inequalities [6–8].
Several proposals that allow one to circumvent the

problem of measurement alignment have been made. One
is to restrict measurements to the single particle level, which
has proven useful for the characterization of multipartite
entanglement under the assumption that the state is pure
[9,10]. Other possibilities are to encode logical qubits into
rotational invariant subspaces of combined degrees of free-
dom [11,12], or to exploit the local-unitary (LU) invariance
of entanglement criteria based on correlation functions
[13–20]. The latter, commonly referred to as reference-frame
(RF) independent entanglement criteria, can be evaluated
without aligning spatially separated measurements [21], but
they still require the experimenters’ control over the choice of
local measurement bases, e.g., three orthogonal ones.
Other strategies for RF independent entanglement detec-

tion lift also the last assumption in the sense that only
measurements with randomly chosen settings are required.
In this case, one has to resort to statistical tools that allow us
to infer the entanglement properties of the considered
states. For instance, in Refs. [22–24] the authors study
entanglement detection given distributions of correlation

functions obtained from local measurements with settings
chosen uniformly at random. Similarly, one can probe the
violation of Bell inequalities with randomly distributed
measurement settings [25–27].
The latter attempts motivate us to push forward in this

direction and to show how to considerably improve
entanglement criteria based on randomly measured corre-
lation functions [22,23]. In this Letter, we thus demon-
strate that a better entanglement detection, and even a
characterization of different classes of multipartite entan-
glement, is possible by combining statistical moments of a
different order. In this respect, we will see that every such
statistical entanglement criterion can be traced back to a
RF independent one using pseudorandom processes, also
referred to as designs. Further on, we demonstrate their
strengths for the detection and characterization of multi-
partite entanglement involving the two lowest nonvanish-
ing moments. We start with the instructive bipartite case of
two qubits and then move to the more involved multi-
partite scenarios.
Moments of random correlations.—To set the stage,

let us consider N qubits prepared in the initial state ρin,
which are measured locally according to the random

bases fðjuð0Þn i ¼ Unj0ni; juð1Þn i ¼ Unj1niÞgn¼1;…;N , where
the fUngn¼1;…;N represent a random unitary transformation
picked from the unitary group Uð2Þ, e.g., according to the

Haar measure. We associate to the random basis ðjuð0Þn i ¼
Unj0ni; juð1Þn i ¼ Unj1niÞ of the nth qubit a direction un on
the Bloch sphere, defined by the components ½un�i ¼
tr½σunσi�, where σi, with i ¼ x, y, z, denote the usual
Pauli matrices and σun ¼ UnσzU

†
n [see Fig. 1(a)]. One

choice of such a set of local random measurement bases
leads to the (random) correlation function:
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Eðu1;…; uNÞ ¼ hσu1 ⊗ … ⊗ σuN iρin : ð1Þ

However, as the directions un are chosen randomly, only
one set of random measurement settings will not give any
insight into the nonlocal properties of the initial state ρin. To
achieve this, we have to perform several rounds of random
measurements and seek a statistical treatment of the obtained
values of the correlation function (1) through its moments. In
order to predict the outcome of this approach, we assume that
the local measurement directions fungn¼1;…;N are chosen
uniformly from the Bloch sphere corresponding to Haar
random unitaries fUngn¼1;…;N . In this scenario the corre-
sponding moments read:

RðtÞ ¼ 1

ð4πÞN
Z
S2
du1…

Z
S2
duNEðu1;…; uNÞt; ð2Þ

where t is a positive integer and dui ¼ sin θidθidϕi denotes
the uniformmeasure on the Bloch sphere S2. As the integrals
in Eq. (2) can be rewritten in terms of integralswith respect to
Haar measures on Uð2Þ, the momentsRðtÞ are by definition
LU invariant and thus good candidates for RF independent
entanglement detection. Also, due to the symmetry of the
correlation functions (1), we can already conclude that
RðtÞ ¼ 0, for all odd t {also see the Supplemental
Material (SM) [28]}.
Moments from designs.—In order to evaluate the uniform

averages over the Bloch sphere in Eq. (2) we can resort to so-
called spherical t designs, which consist of a finite set of
points fuk ∈ S2jk ¼ 1;…; LðtÞg ⊂ S2 fulfilling the property

1

LðtÞ
XLðtÞ

k¼1

PtðukÞ ¼
Z
S2
duPtðuÞ; ð3Þ

for all homogeneous polynomials Pt∶ S2 → R of degree at
most t [32]. AsEðu1;…; uNÞt is such a polynomial in each of
its local settings uk, Eq. (3) directly yields the formula:

RðtÞ ¼ 1

ðLðtÞÞN
XLðtÞ

k1;…;kN¼1

Eðuk1 ;…; ukN Þt; ð4Þ

wherefukj jkj ¼ 1;…; LðtÞg, for all j, are spherical t designs.
Hence, we find as a first result that spherical t designs allow
for an evaluation of theRðtÞ’s based on a finite numberLðtÞ of
local measurement settings and thus directly link them to RF
independent entanglement criteria [13–20]. Furthermore, we
note that similar implications also hold for systems of larger
local dimensions where one has to resort to unitary designs
for the evaluation of the respective moments [33–37] (see
also SM [28] for more details).
The drawback of spherical and unitary designs is that,

while their existence has been proven [32], there is no
general strategy known to construct them for a given t.
Nonetheless, by exploiting group theoretical methods it
was possible to find a number of examples of exact
spherical [38] and unitary designs [34]. For instance, a
well-known example is the Clifford group which forms
a unitary 3-design and, for a qubit, reduces to a spherical
3-design on the Bloch sphere consisting of Lð3Þ ¼ 6
orthogonal directions f�eiji ¼ x; y; zg. Furthermore, a
number of finite rotation groups on the Bloch sphere were
identified as spherical designs of order t ≤ 20 [38]. An
example of such a spherical design, with t ¼ 5, is given
by the vertices fviji ¼ 1;…; Lð5Þ ¼ 12g, forming the
polyhedron presented in Fig. 1(b). Hence, following
Eq. (4), we find

Rð2Þ ¼ 1

3N

X
i1;…;iN¼x;y;z

Eðei1 ;…; eiN Þ2; ð5Þ

Rð4Þ ¼ 1

6N

X6
i1;…;iN¼1

Eðvi1 ;…; viN Þ4; ð6Þ

where the limits, Lð3Þ=2 ¼ 3 and Lð5Þ=2 ¼ 6, respectively,
are halved due to the symmetry of Eq. (1). Equations (5)
and (6) thus manifest the growth of measurement settings
that are required for the evaluation of moments with
increasing order, a fact that also yields interesting prospects
for generalizations of spin-squeezing inequalities [39–42].
Lastly, note that in a similar manner one can obtain
expressions for higher moments, but for the remainder
of the paper we will mainly focus on Rð2Þ and Rð4Þ.
Bipartite entanglement.—An important subclass of two-

qubit states is that of Bell diagonal (BD) states, which are
defined as ρBD ¼ 1

4
½14 þ

P
j¼x;y;zcjσj ⊗ σj�, with real

parameters cj, such that 0 ≤ jcjj ≤ 1, and the eigenvalues
λj of ρBD are given by λ1;2 ¼ ð1 ∓ c1 ∓ c2 − c3Þ=4 and
λ3;4 ¼ ð1� c1 ∓ c2 þ c3Þ=4 [43]. In Fig. 2 we present the

(a) (b)

FIG. 1. (a) Schematic representation of a N-qubit entanglement
detection scheme based on local measurements with randomly
chosen settings u1;…; uN . The moments RðtÞ are invariant under
LU transformations fVngn¼1;…;N (grey shaded areas), which
might be caused by the qubits propagation, e.g., the propagation
of optical qubits through fiber. (b) Plot of the 6 measurement
settings corresponding to the spherical 5-design. Each direction
yields two points on the Bloch sphere, which together yield
the vertices of an icosahedron, i.e., a polyhedron with twenty
equilateral triangular faces.
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set of BD states in the space spanned by the momentsRð2Þ

and Rð4Þ, obtained from an analytic optimization over the
parameters c1, c2, and c3 (for details see the SM [28]). In
the same figure we indicate the division of the set of states
into an separable and entangled part, as it results from the
separability condition jc1j þ jc2j þ jc3j ≤ 1. Note that,
there remains a small overlap between the two sets
containing both separable and entangled BD states that
can be distinguished perfectly by taking into account also
the moment Rð6Þ, as shown in the SM [28]. Hence, the
entanglement of Bell diagonal states is completely char-
acterized by the first three nonvanishing moments RðtÞ,
with t ¼ 2, 4, 6.
Further on, we note that for any general two-qubit state ρ

one can find a BD state ρBD that has the same moments.

This is a direct consequence of the fact that the RðtÞ’s are
LU invariant, and that the transformation eliminating the
local Bloch vector components of ρ is separable. In
conclusion, the set of general and BD states are identical
in the space spanned by the moments (see Fig. 2).
Furthermore, as separable transformations are entangle-
ment nonincreasing, we obtain our main result: for sepa-
rable states, one has

FðRð2Þ;Rð4ÞÞ ≥ 0; ð7Þ

where F is a piecewise polynomial function characterizing
the border of the separable set, derived in the SM [28]. It is
evident that (7) detects more entangled states than any
criteria, depending only on either of the moments: Rð2Þ ≤
1=32 [13,22] or Rð4Þ ≤ 1=52 [28].
Multiqubit entanglement.—As application of the above

bipartite criterion for the detection of multiqubit entangle-
ment, we consider the class of Dicke states which for N

qubits read jDN
k i ¼ 1=

ffiffiffiffiffiffiffi
ðNkÞ

q P
jPjðj1i⊗kj0i⊗ðN−kÞÞ, where

k is the number of excitations and
P

jPj denotes the sum
over all nonequivalent permutations among the qubits. As
Dicke states are invariant under permutations of their
subsystems, we can detect their entanglement by focusing
on any of their two-qubit marginals. We also emphasize
that none of the states jDN

k i, for any N and k, can be
detected using only either of the moments Rð2Þ or Rð4Þ. In
contrast, our novel nonlinear criterion (7) is capable
detecting Dicke state entanglement. For instance, in
the case of the N-qubit W-state jWNi ¼ jDN

k¼1i we can
ascertain entanglement for N ≤ 3. The same holds for a
subset of Dicke states with k > 1. In Fig. 2(b), we represent
the set of Dicke states detected by our criterion for up to
200 qubits.
In order to obtain better criteria that are capable of

detecting more entangled states, we have to take into
account moments of N-body correlation functions. In this
respect, we note that entanglement criteria based only on
the second moment have been subject of investigations in
the context of correlation tensor norms [13–20,22]. For
instance, it is known that Rð2Þ ≤ 1=3N for all separable
N-qubit states. Here, we ask whether these results can be
improved upon by combiningN-body moments of different
order. However, an analytical characterization of the
borders of the set of (separable) states as presented for
two qubits becomes very demanding already for three
parties. Despite this difficulty, we gained insight into the
structure of the three-qubit state space by numerically
generating more than 105 random (fully separable) states.
In Fig. 3(a) we present the results of this procedure. As for
two qubits, we find that an advantage for entanglement
detection is possible by taking into account Rð4Þ. An
analytical proof of this observation, in particular for more
qubits, remains subject of future investigations.

(a)

(b)

FIG. 2. (a) Representation of the set of two-qubit separable
(blue solid lines) and entangled (red dotted lines) BD states in the
space spanned by the moments Rð2Þ and Rð4Þ in the range
0 ≤ Rð2Þ ≤ 1=32. ForRð2Þ ≤ 1=33 all states are separable, and for
1=33 ≤ Rð2Þ ≤ 1=32, separable and entangled states have a
nonzero overlap (striped region). The two-qubit criterion dis-
cussed in the main text is indicated by the white dashed curve.
The inset depicts the rest of the set of entangled states in the range
1=32 ≤ Rð2Þ ≤ 1=3. The maximally mixed state (A), the pure
product states (B) and the Bell states (C) are indicated by labeled
black circles. Circles labeled (D1) to (D5) represent Dicke
reduced states jDN

k¼2i, with N ¼ 3;…; 7. (b) Dicke states
jDN

k i detected from two-body correlations. The red area repre-
sents values of N and k for which the criterion (7) is violated.
Black dots show the range ΔN ¼ Nmax − Nmin, where Nmax and
Nmin indicate the piecewise parallel upper and lower bounds of
the red area, as a function of k.
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Classes of multipartite entanglement.—In the multipar-
tite case, it is also of interest to discriminate different
classes of multipartite entanglement that are defined
through the concept of stochastic local operations and
classical communication (SLOCC) [44,45]. Two pure
N-qubit states jΨi and jΦi are SLOCC equivalent if there
exist invertible operations Ai, with i ¼ 1;…; N, such that
jΨi ¼ ⨂N

i¼1AijΦi. The corresponding equivalence classes
that result from this definition are referred to as SLOCC
classes. While for three parties there exist two SLOCC
classes of genuinely multipartite entangled states, the
W- and the GHZ-class [44], they become infinitely
many already for N ¼ 4 [46]. In the following, we will
concentrate our attention on the corresponding equivalence

classes ofN qubits, referred to asWðNÞ and GHZðNÞ. As for
separable states the respective sets of mixed states are given
by the convex hulls ConvðWðNÞÞ and ConvðGHZðNÞÞ [45].
For the characterization of the W-class, it is helpful to

resort to its standard form representing all pure W-class
states up to LU transformations [47–49]. The latter allows
us to numerically determine the borders of the pureW-class
in the space spanned by the moments RðtÞ, as presented in
Fig. 3(a), for N ¼ 3. In the same figure we present an
estimate of the borders of the mixed W-class which
has been obtained by minimizing over a subclass of
ConvðWðNÞÞ and confirmed by generating more than 105

mixed W-class states (for details of this procedure see the
SM [28]). As a result, we see that a discrimination of states
outside of the W-class based on the knowledge of Rð2Þ and
Rð4Þ is possible.
With increasing qubit number, the numerical characteri-

zation of the complete W-class becomes computationally
more demanding. For this reason, we aim for simpler
criteria that can be extended to larger numbers of qubits.
One way of doing so is to compute the maximum ofRð2Þ in
WðNÞ, and use its convexity to derive the criterion
Rð2Þ ≤ maxρ0∈WðNÞRð2Þ ≕ χðNÞ, for all ρ ∈ ConvðWðNÞÞ.
We further test this criterion by applying it to the noisy
GHZ state p1=2N þ ð1 − pÞjGHZihGHZj and a pure
entangled state jΨðθÞi ¼ cos θj0i⊗N þ sin θj1i⊗N , and
we determine the corresponding noise and amplitude
thresholds, p� and θ�, respectively, up to which the states
can be certified to be not in ConvðWðNÞÞ [see Fig. 3(b)].
Clearly, the performance of the criterion improves with
growing qubit number.
Lastly, we take an attempt to go beyond these results

through a more general criterion that combines Rð2Þ and
Rð4Þ. Examining the structure of the W-class in Fig. 3(a),
we expect that a line passing through the points C and D
yields such an improvement. For an arbitrary N, such a line
can be derived by first maximizing individually, Rð2Þ and
Rð4Þ, over WðNÞ. The resulting arguments of these max-
imizations then allow us to define a line with slope mðNÞ.
Second, we maximize the Rð4Þ-intercept bðNÞ of this line
over WðNÞ to ensure that it touches its border. Finally, as a
linear combination of two convex functions with positive
coefficients is again convex, we arrive at the criterion
mðNÞRð2Þ þ b̃ðNÞ ≥ Rð4Þ, for all ρ ∈ ConvðWðNÞÞ and with
b̃ðNÞ ¼ maxρ∈WðNÞbðNÞ, as demonstrated in the SM [28].
The performance of the latter is presented Fig. 3(b).
Evidently, the observed improvement for three qubits does
not hold for a larger qubit number. Hence, in order to
improve the above results, a more refined nonlinear witness
is desirable.
Experimental considerations.—The discussed methods

are of interest for photonic free-space quantum communi-
cation over distances of several hundreds of kilometers [50],

(a)

(b)

FIG. 3. (a) Representation of the set of three-qubit states in the
space spanned by the moments Rð2Þ and Rð4Þ. Gray points
correspond to randomly generated mixed quantum states. La-
beled red circles indicate the maximally mixed state (A), all pure
product states (B), biseparable states of the form jϕijBelli (C),
the three-qubit W- (D), and the GHZ-state (E). While the black
lines connecting (B), (C), and (D) enclose the setWð3Þ, its mixed
extension ConvðWð3ÞÞ is indicated by black dotted lines. The
noisy GHZ state (blue dashed line) and the pure state jΨðθÞi (red
dashed-dotted line) are shown for 0 ≤ p ≤ 1 and 0 ≤ θ ≤ π=2,
respectively. The inset shows randomly generated fully separable
states (light blue points) in the range 0 ≤ Rð2Þ ≤ 1=33. (b) Plot of
the noise threshold p� (blue dots, left scale) up to which a GHZ
state is detected to be not in ConvðWðNÞÞ. Solid and dashed lines
refer to thresholds obtained from the criteria Rð2Þ ≤ χðNÞ and
mðNÞRð2Þ þ b̃ðNÞ ≥ Rð4Þ, respectively, for varying number of
qubits N. Accordingly, red squares show the amplitude threshold
θ� (red right scale) above which jΨðθÞi is detected to be outside
of WðNÞ.
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which is currently in the process of being extended to space
involving satellites orbiting the earth [51–54]. Here, due to
the motion, distance, and number of involved satellites, the
issue of sharing classical reference frames becomes particu-
larly challenging [10–12]. In such a scenario, the moments
(2) can either be evaluated exactly through the fixed
measurement settings involved in Eqs. (5) and (6), in the
spirit of RF independent entanglement criteria [19].
Alternatively, they can be estimated using a statistical treat-
ment based on a finite number of randomly chosen settings.
The latter can be achieved experimentally by digitally
generating random unitary transformations that are sub-
sequently applied prior to the photon polarization measure-
ments (see, e.g., Ref. [55]). Also note that, according to the
analysis presented in Refs. [22,23], the number of random
measurement settings needed to certify entanglement with
confidence scales favorably with the system size, thus
making it an attractive method in the multipartite regime.
Conclusions.—A major challenge for the experimental

detection and characterization of multipartite entanglement
is the need of sharing a commonRFallowingus to coordinate
measurements taken at a distance. In this Letter, we showed
how to considerably improve existing techniques for RF
independent entanglement verification by combining stat-
istical moments of correlation functions obtained from
measurements taken with randomly distributed settings.
To this effect, we made use of designs that allow for a
straightforward evaluation of the corresponding moments.
We demonstrated the introduced techniques by applying
them todetect entanglement inmultiqubit systems and also to
discriminate different classes of multipartite entanglement.
Finally, our results yield interesting prospects for gen-

eralizations of the spin-squeezing inequalities derived in
Refs. [39–42] and the entanglement criteria obtained in
Refs. [56,57]. Although such generalized criteria would
lose the LU invariance property, the extension of the
number of local measurement settings originating from
the spherical 5-design is expected to entail an improvement
in their detection power.
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