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Entanglement theory is formulated as a quantum resource theory in which the free operations are local
operations and classical communication (LOCC). This defines a partial order among bipartite pure states
that makes it possible to identify a maximally entangled state, which turns out to be the most relevant state
in applications. However, the situation changes drastically in the multipartite regime. Not only do there
exist inequivalent forms of entanglement forbidding the existence of a unique maximally entangled state,
but recent results have shown that LOCC induces a trivial ordering: almost all pure entangled multipartite
states are incomparable (i.e., LOCC transformations among them are almost never possible). In order to
cope with this problem we consider alternative resource theories in which we relax the class of LOCC to
operations that do not create entanglement. We consider two possible theories depending on whether
resources correspond to multipartite entangled or genuinely multipartite entangled (GME) states and we
show that they are both nontrivial: no inequivalent forms of entanglement exist in them and they induce a
meaningful partial order (i.e., every pure state is transformable to more weakly entangled pure states).
Moreover, we prove that the resource theory of GME that we formulate here has a unique maximally
entangled state, the generalized GHZ state, which can be transformed to any other state by the allowed free
operations.
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Introduction.—Entanglement is a striking feature of
quantum theory with no classical analogue. Although
initially studied to address foundational issues [1], the
development of quantum information theory [2] in the last
few decades has elevated it to a resource that allows tasks to
be implemented which are impossible in classical systems.
The resource theory of entanglement [3] aims at providing
a rigorous framework to qualify and quantify entanglement
and, ultimately, to understand fully its capabilities and
limitations within the realm of quantum technologies.
However, this theory is much more firmly developed for
bipartite than multipartite systems. In fact, although a few
applications have been proposed within the latter setting
such as secret sharing [4], the one-way quantum computer
[5], and metrology [6]; a deeper understanding of the
complex structure of multipartite entangled states might
inspire further protocols in quantum information science
and better tools for the study of condensed-matter systems.
The wide applicability of the formulation of entangle-

ment theory as a resource theory has motivated an active
line of work [7] that studies different quantum effects from
this point of view such as coherence [8], reference frame
alignment [9], thermodynamics [10], nonlocality [11] or
steering [12]. The main question a resource theory
addresses is to order the set of states and provide means
to quantify their nature as a resource. The so-called free
operations are crucial to this task. This is a subset of

transformations, which the given scenario dictates can be
implemented at no cost. Thus, all states that can be prepared
with these operations are free states. Conversely, nonfree
states acquire the status of a resource: granted such states,
the limitations of the corresponding scenario might be
overcome. Moreover, the concept of free operations allows
an order relation to be defined. If a state ρ can be
transformed into σ by some free operation, then ρ cannot
be less resourceful than σ since any task achievable by σ is
also achievable by ρ as the corresponding transformation
can be freely implemented. However, the converse is not
necessarily true. Furthermore, one can introduce resource
quantifiers as functionals that preserve this order.
Since entanglement is a property of systems with many

constituents which may be far away, the natural choice for
free operations in this resource theory is local operations
and classical communication (LOCC). Indeed, parties
bound to LOCC can only prepare separable states, and
entangled states become a resource to overcome the
constraints imposed by LOCC manipulation. Nielsen
characterized in Ref. [13] the possible LOCC conversions
among pure bipartite states, which revealed that the LOCC
ordering reduces to majorization [14] and, remarkably, that
there is a unique maximally entangled state for fixed local
dimension. This is because this state can be transformed by
LOCC into any other state of that dimension but no other
state of that dimension can be transformed into it. This state
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is then regarded as a gold standard to measure entangle-
ment and, unsurprisingly, it turns out to be the most useful
state for bipartite entanglement applications such as tele-
portation. Importantly, the situation changes drastically in
the multipartite case. Here, Ref. [15] and subsequent work
[16] have shown that there exist inequivalent forms of
entanglement: the state space is divided into classes, the so-
called stochastic LOCC (SLOCC) classes, of states which
can be interconverted with nonzero probability by LOCC
but cannot be transformed outside the class by LOCC, even
probabilistically. This in particular shows that no maxi-
mally entangled state can exist for multipartite states. Still,
one could, in principle, study the ordering induced by
LOCC within each SLOCC class. Recent work [17] in this
direction has revealed, however, an extreme feature that
culminates with the result of Ref. [18]: almost all pure
states of more than three parties are isolated; i.e., they
cannot be obtained from nor transformed to another
inequivalent pure state of the same local dimensions by
LOCC. This means that almost all pure states are incom-
parable by LOCC, inducing a trivial ordering and a
meaningless arbitrariness in the construction of entangle-
ment measures. In this sense, one may say that the resource
theory of multipartite entanglement with LOCC is generi-
cally trivial.
We believe this calls for a critical reexamination of the

resource theory of entanglement and, in particular, for the
notion of LOCC as the ordering-defining relation. Indeed,
although LOCC transformations have a clear operational
interpretation, this is not, in fact, the most general class of
transformations that maps the set of separable states into
itself. In other words, LOCC is strictly included in the class
of nonentangling operations. Thus, from the abstract point
of view of resource theories other consistent theories of
entanglement (i.e., with separable states being the free
states) are possible where the set of free operations is larger
than LOCC. Hence, in principle, these could give a more
meaningful ordering and revealing structure in the set of
multipartite entangled states. To study such possibility is
precisely the goal of this Letter. A similar approach has
been taken to address other unsatisfying features of the
resource theory of entanglement under LOCC such as
irreversibility of state transformations for an arbitrarily
large number of copies [19]. Remarkably, Ref. [20] has
shown that shifting the paradigm from LOCC to asymptotic
nonentangling operations provides a reversible theory of
asymptotic entanglement interconversion with a unique
entanglement measure and this result has been extended in
Ref. [21] to arbitrary resource theories under asymptotic
resource-non-generating operations [7]. Also, in the
absence of a clear set of physical constraints determining
the free operations, certain quantum resource theories have
been constructed by first defining the set of free states and
then considering classes of operations that preserve this set.
This is the case of the resource theory of coherence [22],

which has been found useful in, e.g., metrology applica-
tions [23] and quantum channel discrimination [24] and
which has subsequently given rise to a fruitful research line
considering an operational interpretation for the set of free
operations (see Refs. [8,25] and references therein).
Since we seek whether a nontrivial theory is at all

possible for single-copy manipulations, we consider here
the resource theory of entanglement under the largest
possible class of free operations in this regime: strictly
nonentangling operations. However, multipartite entangle-
ment comes in two different forms. We will call entangled
those states that are not fully separable (FS), while we will
call genuinely multipartite entangled (GME) those states
which are not biseparable (BS). Thus, one can formulate
two theories: one in which entangled states are considered a
resource and where the free operations are full separability
preserving (FSP) and the analogous with GME states and
biseparability-preserving (BSP) operations. Interestingly,
our first result is that both formalisms lead to nontrivial
theories: no resource state is isolated in any of these
scenarios. Moreover, we show that there are no inequivalent
forms of entanglement. Then, we consider whether there
exists a unique multipartite maximally entangled state in
these theories like in the bipartite case. While we find a
negative answer (at least in the simplest nontrivial case of
3-qubit states) for FSP operations, our main result is that
the question is answered affirmatively in the resource
theory of GME under BSP operations. The maximally
GME state turns out to be the generalized Greenberger-
Horne-Zeilinger (GHZ) state.
Definitions and preliminaries.—We will consider n-

partite systems with local dimension d, i.e., states in the
Hilbert space H ¼ H1 ⊗ � � � ⊗ Hn ¼ ðCdÞ⊗n. Given a
subset M of ½n� ¼ f1;…; ng and its complement M̄, we
denote by HM the tensor product of the Hilbert spaces
corresponding to the parties inM and analogously withHM̄.
A pure state jψi ∈ H is FS (otherwise entangled) if jψi ¼
jψ1i ⊗ jψ2i ⊗ � � � ⊗ jψni for some states jψ ii ∈ Hi ∀ i,
while it is BS (otherwise GME) if jψi ¼ jψMi ⊗ jψM̄i for
some states jψMi ∈ HM and jψ M̄i ∈ HM̄ and M ⊊ ½n�.
These notions are extended to mixed states by the convex
hull and we define the sets of FS and BS states by

FS ¼ convfψ∶jψiis FSg; BS ¼ convfψ∶jψiis BSg;
ð1Þ

where here and throughout the Letter we use the nota-
tion ψ ¼ jψihψ j whenever a state is specified as pure.
Transformations in quantum theory are given by completely
positive and trace preserving (CPTP) maps and we say that
such a map Λ (from and to operators on H) is FSP (BSP) if
ΛðρÞ ∈ FS ∀ ρ ∈ FS [ΛðρÞ ∈ BS ∀ ρ ∈ BS]. We will say
that a functional E taking operators on H to non-negative
real numbers is an FSP measure (BSP measure) if EðρÞ ≥
E½ΛðρÞ� for every state ρ and FSP (BSP) map Λ. This is
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completely analogous to entanglement measures, which are
required to be non-increasing under LOCCmaps. Although
LOCC is a strict subset of the FSPandBSPmaps, somewell-
known entanglement measures are still FSP or BSP mea-
sures and this will play an important role in assessing which
transformations are possible within the two formalisms that
we consider here. Indeed, measures of the form

EX ðρÞ ¼ inf
σ∈X

EðρjjσÞ; ð2Þ

whereX stands for eitherFS orBS, have the corresponding
monotonicity property as long as the distinguishability
measure EðρjjσÞ is contractive, i.e., E½ΛðρÞjjΛðσÞ� ≤
EðρjjσÞ for every CPTP map Λ. This includes the relative
entropy of entanglement [26] for EðρjjσÞ ¼ trðρ log ρÞ −
trðρ log σÞ and the robustness (RX ) [27] for

EðρjjσÞ ¼ RðρjjσÞ ¼ minfs∶ ðρþ sσÞ=ð1þ sÞ ∈ Xg:
ð3Þ

If one uses the fidelity EðρjjσÞ ¼ 1 − FðρjjσÞ ¼ 1−
tr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
, for pure states Eq. (2) boils down to the

geometric measure [28], which we will denote by GX and
which is then seen to be a measure under maps that preserve
X . Notice, however, that, as has been recently shown in the
bipartite case in Ref. [29], not all LOCC-measures remain
monotonic under nonentangling maps since the latter
formalism allows state conversions that the former does
not. In the following, in order to understand the ordering of
resources induced by these theories, we study which trans-
formations are possible among pure states under FSP and
BSP maps. However, first one should point out that when-
ever there exist mapsΛ and Λ0 in the corresponding class of
free operations such thatΛðψÞ ¼ ϕ andΛ0ðϕÞ ¼ ψ , then the
states ψ and ϕ are equally resourceful and should be
regarded as equivalent in the corresponding theory. This
is moreover necessary so as to have a well-defined partial
order. Hence, although for simplicity we will talk about
properties of states, one should have in mind that one is
actually speaking about equivalence classes. Specifically, it
is known that two pure states are interconvertible by LOCC
if and only if they are related by local unitary transforma-
tions [30]. Interestingly, we will see that the equivalence
classes are wider in the resource theory of GME under BSP.
It should be stressed that, to our knowledge, this is the first
time that a resource theory of GME is formulated. Notice
that the restriction to LOCC can only have FS states as free
states. Furthermore, allowing a strict subset of parties to act
jointly and classical communication does not fit the bill
either as BS is not closed under these operations.
Nontriviality of the theories.—Our first two results are

valid in both the FSP and BSP regimes. Thus, following the
notation above, the two possible classes of maps will be
referred to as X preserving.

Theorem 1—collapse of the SLOCC classes: In a
resource theory of entanglement where the free operations
are X -preserving maps, all resource states are intercon-
vertible with a nonzero probability; i.e., given any pure ψ1,
ψ2 ∉ X , there exists a completely positive and trace non-
increasing X -preserving map Λ such that Λðψ1Þ ¼ pψ2

with p ∈ ð0; 1�.
Theorem 2—no isolation: In a resource theory of

entanglement where the free operations are X -preserving
maps, no resource state is isolated; i.e., given any pure ψ1 ∉
X onH, there exists an inequivalent pure ψ2 ∉ X onH and
a CPTP X -preserving map Λ such that Λðψ1Þ ¼ ψ2.
The full proof of these two results can be found in

Ref. [31]. The proof of Theorem 1 is based on explicitly
constructing a completely positive and trace nonincreasing
X -preserving map Λ such that Λðψ1Þ ¼ pψ2 whenever it
holds that

p ≤
1

RX ðψ2Þ
GX ðψ1Þ

1 −GX ðψ1Þ
: ð4Þ

Since it can be guaranteed that RX ðψ2Þ > 0 and 0 <
GX ðψ1Þ < 1 when ψ1, ψ2 ∉ X , there always exists p ∈
ð0; 1� such that Eq. (4) holds. Theorem 2 then arises as a
corollary as, given any ψ1 ∉ X, continuity arguments show
that there always exists an inequivalent ψ2 ∉ X with
RX ðψ2Þ small enough so that one can take p ¼ 1 in
Eq. (4) and construct a CPTP map.
Theorem 1 proves that in our case there are no inequi-

valent forms of entanglement. This is in sharp contrast to
LOCC where, leaving aside the case H ¼ ðC2Þ⊗3, the state
space splits into a cumbersome zoology of infinitely many
different SLOCC classes of unrelated entangled states.
Theorem 2 provides the nontriviality of our theories. While
almost all states turn out to be isolated under LOCC [18],
our classes of free operations induce a meaningful partial
order structure where, as in the case of bipartite entangle-
ment, every pure state can be transformed into a more
weakly entangled pure state. It is important to mention that
the result of Ref. [18] proves generic isolation when
transformations are restricted among GME states with
the rank of all n single-particle reduced density matrices
equal to d. However, Theorem 2 still holds under this
restriction [31].
Existence of a maximally resourceful state.—Theorems 1

and 2 show that limitations of the resource theory of
multipartite entanglement under LOCC can be overcome if
one considers FSP or BSP operations instead. These
positive results raise the question of whether the induced
structure is powerful enough to have a unique multipartite
maximally entangled state. If this were so, our theories
would point to a relevant class of states that should be at the
heart of the applications of multipartite entanglement in a
similar fashion to the maximally entangled state in the
bipartite case. In order to answer this question, we provide
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first an unambiguous definition of a maximally resourceful
state which, on the analogy of the bipartite case, depends on
the number of parties n and local dimension d: a state ψ on
H is the maximally resourceful state on H if it can be
transformed by means of the free operations into any other
state onH [41]. We analyze first the case of FSP operations,
where we find a negative answer to the above question.
Theorem 3: In the resource theory of entanglement

where the free operations are FSP maps, there exists no
maximally entangled state on H ¼ ðC2Þ⊗3.
Although the details of the proof are given in Ref. [31],

we outline here its structure. First, we use that if a
maximally entangled state in this case existed, it would
need to be theW state jWi ¼ ðj001i þ j010i þ j100iÞ= ffiffiffi

3
p

.
This is because it has been shown in Ref. [42] that the W
state is the unique state in this Hilbert space that achieves
the maximal possible value of GFS , which we have shown
above to be an FSP measure. Thus, if there existed a
maximally entangled state, it would be necessary that theW
state could be transformed by FSP into any other state.
However, we show that there exists no FSP map trans-
forming the W state into the GHZ state [jGHZð3; 2Þi in
Eq. (5) below]. To verify this last claim, it suffices to find an
FSP measure E such that EðGHZÞ > EðWÞ. However, as
discussed above, not many FSP measures are known and,
as with the geometric measure, it is also known that the
relative entropy of entanglement of theW is larger than that
of the GHZ state [43]. This leaves us then with the
robustness measure RFS, for which we are able to show
that RFSðWÞ ¼ RFSðGHZÞ ¼ 2. This alone does not for-
bid that W→FSP GHZ, but from the insight developed in
computing these quantities, an obstruction to such trans-
formation can be found even though they are equally
robust. It is worth mentioning that, to our knowledge, this
is the first time that the robustness is computed for
multipartite states and we have reasons to conjecture that
theW and GHZ states attain its maximal value on H, being
the only states that do so.
Theorem 3 forbids then the existence of a multipartite

maximally entangled state under FSP in the simplest case
of H ¼ ðC2Þ⊗3. However, it is instructive to compare with
the LOCC scenario since these values of n and d make up
the only case where no state is isolated in the latter
formalism (aside from the bipartite case). We show in
Ref. [31] that theW and GHZ states can be transformed by
FSP operations into states that are not obtainable from any
other 3-qubit states by LOCC. These states might be chosen
to lie in different SLOCC classes, so, additionally, this
provides an explicit example of deterministic FSP con-
versions among states in different SLOCC classes.
Finally, we study the resource theory under BSP oper-

ations where, remarkably, we find a unique maximally
GME state for any value of n and d, given by the
generalized GHZ state

jGHZðn; dÞi ¼ 1ffiffiffi
d

p
Xd
i¼1

jii⊗n: ð5Þ

Theorem 4: In the resource theory of entanglement
where the free operations are BSP maps, there exists a
maximally GME state on every H. Namely, ∀ jψi ∈
ðCdÞ⊗n, there exists a CPTP BSP map Λ such that
Λ½GHZðn; dÞ� ¼ ψ .
The complete proof of this result is given in Ref. [31].

The main idea behind it is to use again the construction of
the proof of Theorems 1 and 2, which shows that there
is a CPTP BSP map Λ such that Λ½GHZðn; dÞ� ¼ ψ
if RBSðψÞ ≤ GBS½GHZðn; dÞ�=f1 − GBS½GHZðn; dÞ�g
[cf. Eq. (4)]. However, unlike for the FS case, GBS is
straightforward to compute [44] in terms of the Schmidt
decomposition across every possible bipartite splitting of

the parties MjM̄ (jψi ¼ P
i

ffiffiffiffiffiffiffiffiffiffi
λMjM̄
i

q
jiiMjiiM̄) as

GBSðψÞ ¼ 1 − max
M⊊½n�

λMjM̄
1 ; ð6Þ

where λMjM̄
1 is the largest Schmidt coefficient of ψ in the

corresponding splitting. This immediately shows that the
generalized GHZ state has maximal value of the geometric
measure, GBS½GHZðn; dÞ� ¼ ðd − 1Þ=d. Finally, a simple
estimate shows that RBSðψÞ ≤ d − 1∀ jψi ∈ ðCdÞ⊗n,
which leads to the desired result.
It follows from the proof that it suffices to have maximal

GBS to be convertible to any other state by BSP operations.
Thus, any state fulfilling that GBS ¼ ðd − 1Þ=d must
automatically maximize any other BSP measure. More
importantly, this also shows that any two states achieving
this value of the geometric measure are deterministically
interconvertible by BSP operations and, therefore, belong
to the same GME-equivalence class despite potentially not
being related by local unitary transformations. An example
of such class when d ¼ 2 are GME graph states for which it
is known that GBS ¼ 1=2 [45]. Hence, all graph states
including the generalized GHZ state are in the equivalence
class of the maximally GME state in this theory. It is
remarkable to find that this very relevant family of states
[46] in quantum computation and error correction has this
feature in a resource theory of GME and we believe this is
worth further research. Another previously considered
family of states that belongs to this equivalence class is
that of absolutely maximally entangled (AME) states [47],
which is defined as those states for which all reduced
density matrices are proportional to the identity in the
maximum possible dimensions. It follows from Eq. (6) that
for all AME states it holds that GBS ¼ ðd − 1Þ=d (for those
values of n and d for which they exist). Equation (6)
also tells us that a necessary condition for a state to be in
the equivalence class of the maximally GME state is
that all single-particle reduced density matrices must be
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proportional to the d-dimensional identity. However,
this condition is not sufficient: the state in ðC2Þ⊗4 jϕi ¼ffiffiffiffi
p

p jϕþi12jϕþi34 þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p jϕ−i12jϕ−i34 (jϕ�i ¼ ðj00i�
j11iÞ= ffiffiffi

2
p

) is a GME state (if p ≠ 0, 1) with this property
but GBSðϕÞ < 1=2 (if p ≠ 1=2).
Conclusions.—We have shown that nontrivial (i.e., with-

out isolation) resource theories of multipartite entangle-
ment are possible in which moreover inequivalent forms of
entanglement do not exist. However, no resource theory of
non-full separability can have a maximally entangled state
for 3-qubit states since this is not possible under FSP
transformations, the largest conceivable class of free
operations (future work should study whether this no-go
result generalizes to other values of n and d). On the other
hand, the BSP paradigm induces a resource theory of GME
with a maximally resourceful state. Given this positive
result, it would be interesting to analyze further features of
this theory and, in particular, whether an operational
grounding to this conceptually satisfying structure can
be found. We also note that GME does not fulfill Axiom
1 of Ref. [21], so it is open whether an asymptotically
reversible theory of this resource is possible.
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