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Entanglement witnesses are operators that are crucial for confirming the generation of specific quantum
systems, such as multipartite and high-dimensional states. For this reason, many witnesses have been
theoretically derived which commonly focus on establishing tight bounds and exhibit mathematical
compactness as well as symmetry properties similar to that of the quantum state. However, for increasingly
complex quantum systems, established witnesses have lacked experimental achievability, as it has become
progressively more challenging to design the corresponding experiments. Here, we present a universal
approach to derive entanglement witnesses that are capable of detecting the presence of any targeted
complex pure quantum system and that can be customized towards experimental restrictions or accessible
measurement settings. Using this technique, we derive experimentally optimized witnesses that are able to
detect multipartite d-level cluster states, and that require only two measurement settings. We present
explicit examples for customizing the witness operators given different realistic experimental restrictions,
including witnesses for high-dimensional entanglement that use only two-dimensional projection
measurements. Our work enables us to confirm the presence of probed quantum states using methods
that are compatible with practical experimental realizations in different quantum platforms.
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Entanglement is an essential resource in quantum infor-
mation science [1], playing a fundamental role in many
tasks such as measurement-based quantum computation
[2], error correction [3], quantum cryptography [4], and
dense coding [5]. It is thus crucial to derive efficient
methods that allow us to experimentally detect and/or
quantify the presence of entanglement in quantum systems.
However, completely characterizing entanglement is still an
open issue [1], especially for complex quantum systems
consisting of multiple parties and/or higher dimensionality.
Several approaches—for example, concurrence and entan-
glement of formation methods [6], as well as quantum
Fisher information [7,8]—allow us to determine entangle-
ment. Such strategies as well as those based on extensive
quantum tomography techniques are extremely challenging
when experimentally applied to complex quantum systems
and/or work only for special quantum states that allow

phase sensitivity estimation [9,10]. Therefore, these are
clearly not universal. Entanglement witnesses are one of the
most appropriate and efficient approaches to verifying
entanglement in a system, as well as the presence of a
specific state [11], since they can be measured directly via
single-party projectors and require a lower number of
measurements (than, e.g., tomography, which needs
dð2NÞ measurements, where d is the state dimensionality,
the number of levels per single party, and N the number of
parties). An entanglement witness is an operator that is used
to detect the generation of a targeted quantum state and to
confirm the realization of genuine multipartite [12,13]
and/or high-dimensional (d-level, i.e., qudit) entanglement
[14,15]. AwitnessW is conventionally designed such that,
if a negative expectation value hWi ¼ TrðWρÞ < 0 is
measured (where ρ is the density matrix of a generic pure
quantum system), the probed quantum state cannot be
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separable or lower dimensional [6,12].When a non-negative
witness expectation value is measured, the result is typically
ambiguous and does not indicate either the presence or the
absence of entanglement. Since the witness tests for a
specific state, a successful measurement of the operator
also provides information about the state structure and
phase, rather than only confirming the presence of entan-
glement. For example, a witness specifically designed for a
four-qubit compact cluster state [16] confirms, when its
expectation value is negative, the presence of that particular
state having a very specific density function, while a positive
measured expectation value of that operator only provides
the information that the tested state is not a compact cluster
state. Indeed, the same witness, if applied to a four-qubit
linear cluster or Greenberger-Horne-Zeilinger (GHZ) [17]
states, would result in a positivemeasured expectationvalue,
even though these two states are both highly entangled
[17,18]. Hence, a witness is a threshold test that can only
detect the presence of a specific state. In contrast to an
entanglement monotone (e.g., the entanglement entropy
[6]), which determines the amount of entanglement, a
witness cannot be used to quantify entanglement. The
necessary and sufficient condition to confirm the generation
of a quantumstate close to the targeted one is thus tomeasure
with high statistical confidence a negative expectation value
of the witness. Specifically, such a witness is appositely
formulated for the considered target.
From a measurement standpoint, the best witness

demands the least effort to experimentally detect a quantum
state. Ideally, it should only include measurements on
single qudits and have as high a noise tolerance as possible
to detect the probed state with large confidence. This is
often in contrast to the theoretical perspective that rather
focuses on defining the tightest bound of the witness
[11–13], which in turn can result in a very complex form.
In recent years, the experimental generation of more
complex quantum states has intensified the need for
witnesses that can detect such states and simultaneously
are straightforward to measure. While this goal has been
partially achieved for GHZ, graph, and cluster states of
qubit (two-dimensional)-based systems [18–20], extending
such “experimentally friendly” witnesses to higher-dimen-
sional systems is still a challenge, and a universal witness
capable of entanglement detection of any complex qudit
state has not been demonstrated yet. Moreover, deriving
witnesses customized to experimental restrictions and
available measurement settings is desirable for a relatively
straightforward experimental realization.
In this Letter, we provide a compact and universal

method to construct entangled pure-state witness operators
that are capable of detecting the presence of any arbitrarily
complex quantum state and can be customized to account
for experimental restrictions. As an example, we here apply
this method to derive a entanglement witness for multi-
partite d-level cluster states which requires only two

measurement settings, allowing us to investigate their
tolerance to white noise. Starting from theoretically optimal
witnesses, we significantly simplify them to derive exper-
imentally optimized pure-state witness operators.
A theoretically optimal witness provides the highest

selectivity (i.e., tolerance towards noise) but requires highly
intricate measurements. With such increasing measurement
complexity, the experimental noise floor rises, and it is very
likely that it is not possible to actually measure the witness,
despite its large bound. Since a witness comprises many
measurements, when these (and in turn, their related errors)
are reduced in number and complexity, the bound is
reduced (i.e., the robustness to noise), but the experi-
mental noise floor decreases as well (see Fig. 1 and the
Supplemental Material [21]). A judiciously chosen meas-
urement setting thus allows for a trade-off between these
effects, where an experimentally optimized witness is one
that has a maximum separation between the measurement
noise floor and witness bound. Our approach is general and
applicable to any witness that has been derived in the
literature. Here, we consider a standard theoretically
optimal witness, which is used to detect the presence of
a pure multipartite quantum state jψi and those states close
to it (e.g., states affected by white noise) [22]:

Wopt
theor ¼

1

1 − α
ðαI − ρÞ; ð1Þ

FIG. 1. Complexity of the measurement settings vs noise
tolerance of the witness. In any experiment, the measurement
settings introduce an experimental noise floor (gray area), which
increases with the measurement complexity. The optimal theo-
retical witness (orange square) has the highest noise tolerance,
but it demands intricate and often unfeasible measurements. The
optimal experimental witness (green circle) requires reduced
measurement complexity, at the cost of having a lower noise
tolerance. The goal is to maximize σ (the shaded green or orange
area), which represents the measurement confidence, given by the
distance between the noise floor and the witness noise tolerance.
Such maximization provides the highest confidence to measure a
negative expectation value of the witness.
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with I being the identity operator and ρ the density matrix
of the state. The factor α must be chosen such that all
separable systems lead to non-negative expectation values
(a method for determining α is presented in Ref. [22]). For
convention, we normalize the witness such that its expect-
ation value for the ideal state is −1. Despite its elegant and
compact mathematical form, the witness in Eq. (1) is not
practical to measure, as it requires quantum state tomog-
raphy to determine ρ [23,24]. Consequently, its characteri-
zation becomes quickly challenging for states with large N
and d [14,25]. A judicious modification and simplification
of the witness in Eq. (1) allows us to experimentally
confirm the generation of a targeted state by making use
of a significantly lower number of projection measure-
ments, which in turn can be implemented through a reduced
number of experimental settings. Without loss of general-
ity, we first introduce the operator Wmeas containing the
specific measurement settings that can be implemented
experimentally (see the Supplemental Material [21] for
details on how to measure an operator by means of multiple
measurement settings). The only restriction for this oper-
ator is that it must be Hermitian, thus having real eigen-
values and being measurable. We then add and subtract
Wmeas from the witness of Eq. (1), so that we keep the
overall expression unchanged:

W ¼ 1

1 − α
ðαI −Wmeas þ ΘÞ; ð2Þ

where we introduce the Hermitian operatorΘ ¼ Wmeas − ρ.
This is allowed since the analysis is based on entanglement
detection via witness measurements, not on entanglement
quantification via monotones. The goal is to exchange Θ
with a scalar number that keeps the witness bounds
unchanged, such that a measurement of the expectation
value ofΘ is not experimentally required. To determine this
scalar number, we need to consider the worst possible
measurement outcome, corresponding to the maximal
expectation value of Θ for any probed state. This concept
can be summarized by the inequality

hΘi ≤ λmaxðΘÞ ¼ hλmaxðΘÞIi; ð3Þ

where λmaxðΘÞ is the largest eigenvalue of Θ. Replacing Θ
in Eq. (2) with λmaxðΘÞI results in an experimentally
optimized entangled pure-state witness:

Wopt
exp ¼ 1

1 − α
½ðαþ λmaxÞI −Wmeas�; ð4Þ

which is valid to detect the realization of any quantum state
for which Eq. (1) is a witness, and eventually, the presence
of entanglement. In particular, any Wmeas with real eigen-
values can be selected. Reducing the number and complex-
ity of measurement settings decreases the sensitivity of an
entanglement witness, which means that less experimental

noise can be tolerated. However, since the experimental
goal is to measure a negative expectation value, this
reduction is justified by the significantly decreased number
of measurements, as well as by the experimentally feasible
form that the operator assumes (see Fig. 1).
The task is to find measurement settings that are

optimized for given experimental restrictions, and still
provide sufficient tolerance to noise and/or experimental
imperfections. Towards this purpose, stabilizers can be
used [3,18] to constructWmeas. A set of observables Sk are
the stabilizers of an N-qudit state jψi if they satisfy the
eigenvalue equations Skjψi ¼ jψi. The full set of dN

stabilizers uniquely describes the quantum state and allows
us to reconstruct the density matrix of the probed state
as [18]

ρ ¼ 1

dN
XdN
n¼1

Sn: ð5Þ

Stabilizer operators are commonly used to derive the
witness for GHZ, graph [26], and cluster [16,18] states.
From an experimental standpoint, the most important
feature of stabilizers is that they are described by gener-
alized Pauli matrices, which makes them measurable
through projections on the single parties of the quantum
system [18,27] (see the Supplemental Material [21] and
Ref. [28] for the definition of projection measurements).
We here provide an example of this method for multi-

partite d-level cluster states ρN;d [29]. An entanglement
witness for two-level (qubit) cluster states has previously
been derived [18]. We use the technique presented here to
derive a generalized witness for cluster states withN parties
and d levels. The first step is to determine the coefficient α
in Eq. (1). To do so, we exploit a unique property of cluster
states, i.e., their maximal connectedness [16]: it is possible
to project any subset of cluster state qudits into maximally
entangled bipartite states by only performing local oper-
ations on the other qudits. This means that, for any bipartite
subsystem that is formed by any combination of two parties
of the initial cluster state, the maximal Schmidt coefficient
is 1=

ffiffiffi
d

p
. This implies that, in the case of multipartite

cluster states, α ¼ 1=d [22]. With this in mind, the operator
in Eq. (1) becomes

Wopt
theor ¼

d
d − 1

�
1

d
I − ρN;d

�
: ð6Þ

The full density matrix of the cluster state can be expressed
in terms of its unique reduced set of main stabilizers (see
the Supplemental Material [21]), as

ρN;d ¼
YN
k¼1

1

d

Xd
l¼1

SðlÞ
k ; ð7Þ

where (l) denotes the power degree of the stabilizer. We
also uphold the convention that, for the properties of the

PHYSICAL REVIEW LETTERS 122, 120501 (2019)

120501-3



generalized Pauli matrices, SðdÞk ¼ I, independently of the
label k. Among all such stabilizers, we can choose a subset
of those consisting of only two independent measurement
settings [27], which can be found by considering only even
or odd main stabilizers (see the Supplemental Material
[21]). These subsets are included in the operatorWmeas (see
the Supplemental Material [21] for a detailed explanation
about the measurement of such operators):

Wmeas ¼
Y
odd k

1

d

Xd
l¼1

SðlÞ
k þ

Y
even k

1

d

Xd
l¼1

SðlÞ
k ; ð8Þ

from which it follows that

Θ ¼
Y
odd k

1

d

Xd
l¼1

SðlÞ
k þ

Y
even k

1

d

Xd
l¼1

SðlÞ
k −

YN
k¼1

1

d

Xd
l¼1

SðlÞ
k : ð9Þ

Exploiting the properties of the stabilizers, we find that the
maximum eigenvalue of Θ is 1 for any N and d, i.e.,
hΘi ≤ λmax ¼ 1 (see the Supplemental Material [21], where
we demonstrate this statement by also making use of
Refs. [30–33]). This leads to an experimentally optimized
witness for N-partite d-level cluster states consisting of
only two measurement settings:

Wopt
exp ¼ dþ 1

d − 1
I −

d
d − 1

�Y
odd k

1

d

Xd
l¼1

SðlÞ
k þ

Y
even k

1

d

Xd
l¼1

SðlÞ
k

�
:

ð10Þ
For d ¼ 2, this operator reduces to the well-known witness
for cluster states of qubits [18].
This witness can be used to investigate the sensitivity of

cluster states to white noise, which reasonably models
experimental noise contributions and is thus considered in
many theoretical and experimental scenarios [18,22,34–
37]. When noise affects a pure entangled state, it adds some
mixture to its density matrix, thus modifying the entangle-
ment properties. Testing the robustness of any pure
entangled state towards noise is thus crucial to determining
the threshold at which the state becomes a nonentangled
mixture. We demonstrate here that the noise tolerance of
Wopt

exp for multipartite states increases with growing dimen-
sionality, similar to two-partite states [38–40]. The pres-
ence of white noise within the cluster state modifies the
density matrix as [18]

ρnoise ¼ ε
I
dN

þ ð1 − εÞρN;d; ð11Þ

with 0 ≤ ε ≤ 1 being the probability that the state is
affected by noise. The robustness of a witness is determined
by a noise threshold εth up to which it still detects the
presence of entanglement, and which reads (see the
Supplemental Material [21])

εth ¼
( ½ 2dd−1 ð1 − 1

dN=2Þ�−1; evenN

½ 2dd−1 ð1 − 1
2dðNþ1Þ=2 − 1

2dðN−1Þ=2Þ�−1; oddN:
ð12Þ

The noise tolerance of high-dimensional cluster states with
respect to this witness increases with d, reaching a
maximum of εth → 0.5 for d → ∞. For d ¼ 2, the result
is identical to the noise sensitivity of the qubit cluster states
derived in Ref. [18]. Most remarkably, our result shows that
different cluster states with the same Hilbert-space sizes
can have distinct noise tolerances. As an example, cluster
states with N ¼ 8, d ¼ 2 and N ¼ 4, d ¼ 4 have equal
Hilbert-space sizes, but the noise tolerances are εth ¼
0.2667 and εth ¼ 0.4 (i.e., 1.5 times higher), respectively.
While here we consider white noise due to its broad
relevance, in future work other noise sources could be
considered.
Detecting Wopt

exp needs significantly fewer measurements
than the d2N required by full quantum tomography; thus it
is more advantageous from an experimental standpoint. For
example, in the case of a four-partite three-level (qutrit)
cluster state [41], Wopt

exp requires 3 × 34 ¼ 243 measure-
ments, vs the 32×4 ¼ 6561 needed for tomography.
The reduced witness of Eq. (4) enables the performance

of very specific customizations. Let us consider the
example of a four-partite qutrit optical cluster state, which
we have recently demonstrated in an optical system
exploiting the time or frequency framework [41] (see also
the Supplemental Material [21] and Ref. [42] for the
concept of frequency-bin entanglement). We consider that
it is only possible to project either qutrits 1 and 2, or 3 and
4, into superposition states (i.e., mathematically, all four
measurement settings X, Z, Y ¼ XZ, and V ¼ XZ† can be
implemented), yet it is not feasible to project all four qutrits
at the same time. Thus, if qutrits 1 and 2, or 3 and 4, were
projected on X, Y, or V, the other qutrits would have to be
projected in the eigenbasis of Z. Measuring on the X, Y, or
V basis typically coincides with significant experimental
complexity and losses, making it undesirable to perform
such measurements on many qudits. Considering these very
specific restrictions, only M ¼ 20 out of the 34 stabilizers,
together with their transposed conjugates, were considered
(see the Supplemental Material [21]). We can therefore
construct a different witness, making use of all the
measurement capabilities:

Wmeas ¼
1

27

X20
k¼1

ðSk þ S†
kÞ;

Θ ¼ 1

27

X20
k¼1

ðSk þ S†
kÞ −

1

81

X81
k¼1

Sk:

The largest eigenvalue of Θ is 13=27, which leads to the
experimentally optimized witness
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Wopt
exp ¼ 11

9
−

1

18

X20
k¼1

ðSk þ S†
kÞ:

This witness has a noise tolerance of εth ¼ 0.45. Thanks to
the customization with respect to the specific experimental
restriction, this value is 20% higher than that of the witness
which only uses two measurement settings (εth ¼ 0.375).
This demonstrates that different experimental restrictions
lead to different optimal witnesses for the same given
quantum state.
The introduced method allows us not only to select any

subset of stabilizers, but also to construct almost arbitrary
measurement operators. One case in which these operators
cannot be constructed by using stabilizers is for confirming
the presence of a qudit quantum state with the experimental
restriction of only two-level projection measurements
being possible. For example, one can consider a three-
level two-photon time-bin entangled state [43–48], i.e.,
jψi ¼ ð1= ffiffiffi

3
p Þðj0; 0i þ j1; 1i þ j2; 2iÞ. In this case, per-

forming three-dimensional projection measurements would
require a stable three-arm interferometer [49], which is
challenging to realize. Instead, we assume that only two-
arm interferometers are readily available [45]. This allows
performing two-basis measurements [50], which in our
case means projections on superpositions of only two time
bins at a time. This experimental restriction signifies that it
is possible to measure the diagonal elements of the
quantum state (i.e., Z and I), but not its off-diagonal
elements (i.e., X, V, and Y). The goal is to construct a
witness that can be measured exclusively through two-
dimensional projection measurements. To this end, we first
consider the optimal witness of Eq. (1):

W ¼ I
2
−
3

2
jψihψ j

¼ I
2
−
1

6
ðI þ Z†Z þ XX þ VY

þ YV þ ZZ† þ X†X† þ V†Y† þ Y†V†Þ

¼ I
3
−
1

6
ðZ†Z þ ZZ†Þ −Φ;

where we enclose the part of the witness that cannot be
directly measured due to the experimental restrictions in
the operator Φ ¼ 1

6
ðXX þ VY þ YV þ X†X† þ V†Y†þ

Y†V†Þ. In order to construct a different witness, we
introduce the operators Xp that correspond to two-dimen-
sional projections, being identical to the Gell-Mann matri-
ces [51] (see Supplemental Material [21]). Furthermore,
they are comparable to partial operators [52], with the
subscript p labeling the subpart of the system on which
the projection is performed. These operators project
on two-level superpositions of only two modes at a time,
while removing the third mode, which corresponds to the
action of a two-arm interferometer on a qutrit time-bin

state. In the computational basis fj0i; j1i; j2ig, they
are X0;1 ¼ j0ih1j þ j1ih0j, X0;2 ¼ j0ih2j þ j2ih0j, and
X1;2 ¼ j1ih2j þ j2ih1j. We can now construct an operator
that has significant overlap with the nonzero elements of
the Φ operator:

Wmeas ¼
1

6
ðZ†Z þ ZZ†Þ

þ 1

2
ðX0;1X0;1 þ X0;2X0;2 þ X1;2X1;2Þ;

Θ ¼ 1

2
ðX0;1X0;1 þ X0;2X0;2 þ X1;2X1;2Þ

−
1

6
ðXX þ VY þ YV þ X†X† þ V†Y† þ Y†V†Þ:

The largest eigenvalue of Θ is 1, which results in a
normalized, experimentally optimized witness for the
chosen two-level projection measurements:

Wopt
exp ¼ 5

3
I − ðZ†Z þ ZZ†Þ

− ðX0;1X0;1 þ X0;2X0;2 þ X1;2X1;2Þ.

This witness has a noise tolerance of 0.375, which is lower
than that of the witness in Eq. (10) (i.e., εth ¼ 0.5).
However, it allows us to perform measurements on a d-
level quantum state via measurement settings which exclu-
sively access a lower number of levels. Moreover, such
measurement settings are significantly simplified and
reduced in number (39 rather than 81), and only require
projections on two-dimensional superpositions.
In conclusion, we have presented a versatile and compact

approach to customize entanglement pure-state witnesses
that are capable of detecting any pure quantum state, as
well as its eventual entanglement, and that account for
experimental restrictions. We first derive experimentally
optimized entanglement witnesses for N-partite d-level
cluster states that consist of only two measurement settings,
finding that increasing the dimensionality of cluster states
significantly decreases their white noise sensitivity. We
show that it is possible to further customize such operators
in the presence of certain experimental restrictions, such
as limitations in the capability of performing projection
measurements on d-level superpositions. The method used
here to reduce the witness experimental complexity by
adding and subtracting a measurement operator is universal
and can be applied to any witness previously derived for
detecting the presence of any specific quantum states:

Wopt
exp ¼ ½λmaxðWmeas þWÞ�I −Wmeas: ð13Þ

The presented technique therefore provides a powerful tool
to simplify the experimental validation of quantum states.
Our approach can be applied to any quantum state, such as
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photonic systems [41], cold atoms [53,54], and trapped
ions [55,56].
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